Motivated Cognition: Effects of Reward Emotion and Other Motivational Factors Across a Variety of Cognitive Domains

Authors: {'first_name': 'Christopher R.', 'last_name': 'Madan'}


A growing body of literature has demonstrated that motivation influences cognitive processing. The breadth of these effects is extensive and span influences of reward, emotion, and other motivational processes across all cognitive domains. As examples, this scope includes studies of emotional memory, value-based attentional capture, emotion effects on semantic processing, reward-related biases in decision making, and the role of approach/avoidance motivation on cognitive scope. Additionally, other less common forms of motivation–cognition interactions, such as self-referential and motoric processing can also be considered instances of motivated cognition. Here I outline some of the evidence indicating the generality and pervasiveness of these motivation influences on cognition, and introduce the associated ‘research nexus’ at Collabra: Psychology.

Keywords: motivationcognitive psychologygoal-oriented behavioremotionreward 
 Accepted on 29 Sep 2017            Submitted on 08 Sep 2017

Considering the scope of motivated cognition

Generally, motivation can be defined as goal-oriented behavior, often with the goal of maximizing pleasure and minimizing pain (Berridge, 2004; Hassin et al., 2009; Hughes & Zaki, 2015; Madan, 2013; see Kleinginna Jr. & Kleinginna, 1981, for an overview of different researchers’ definitions). As topics within the scope of of ‘motivated cognition’ often are considered more directly, I will first briefly describe a facet of this research area as an example. It is well known that emotion can influence how we attend to the world around us, such as in studies of the weapon-focus effect (Fawcett et al., 2013; Loftus et al., 1987; Steblay, 1992) and flash-bulb memories (Bohn & Berntsen, 2007; Brown & Kulik, 1977; Hirst et al., 2009). These findings lay the foundation for theories such as the attentional narrowing hypothesis (Easterbrook, 1959) and arousal-biased competition hypothesis (Mather & Sutherland, 2011) (though there is also evidence of a role of distinctiveness; Dewhurst & Parry, 2000; Pickel, 1998; Talmi & Moscovitch, 2004). However, a broader view would be to consider emotion-cognition interactions as segment of a more extensive literature on goal-oriented behavior and motivation, a domain-general perspective on the influences of motivational factors on cognition. For instance, rewards have been shown to similarly bias attention allocation, even when using considerably different experimental procedures (Anderson, 2013, 2016a; Awh et al., 2012). This broader view is in-line with recent perspectives on the influence of motivation on cognition (Botvinick & Braver, 2015; Braver et al., 2014; Chiew & Braver, 2011; Cunningham & Brosch, 2012; Gable & Harmon-Jones, 2010; Harmon-Jones et al., 2012a, b; Hughes & Zaki, 2015; Madan, 2013; Murty & Dickerson, 2017; Northoff & Hayes, 2011).

Emotion and reward

Considered broadly, emotion and reward processing bare many commonalities in their influence on cognition. For instance, both can preferentially capture attention (Aarts et al., 2008; Anderson, 2005, 2013, 2016a; Arnell et al., 2007; Bocanegra & Zeelenberg, 2009; MacKay et al., 2004; Raymond & O’Brien, 2009; Strange et al., 2003) and lead to impairments in processing of peripheral information information (Anderson, 2013; Anderson & Yantis, 2013; Bucker & Theeuwes, 2017; Dolcos et al., 2011; Kensinger et al., 2007; Talmi, 2013). Moreover, even when allowing for sufficient allocation of attention, both emotion and reward can impair memory for intentionally encoded contextual information (Madan et al., 2012a, 2017a, 2012b; Zimmerman & Kelley, 2010). Emotional arousal is often thought to be the principle dimension (as opposed to valence) (Bradley et al., 2001; Christianson, 1992; Mather & Sutherland, 2011; Talmi, 2013), and there is increasing evidence that ‘salience,’ an analogous dimension, is important to reward processing (Castel et al., 2016; Kahneman et al., 1993; Litt et al., 2011; Ludvig et al., 2014; Madan et al., 2014; Madan & Spetch, 2012; Tsetsos et al., 2012; Wispinski et al., 2017; Zeigenfuse et al., 2014). Providing more mechanistic similarities between emotion and reward, both have been shown to relate to autonomic function (e.g., pupil dilation and heart rate) (Abercrombie et al., 2008; Ariel & Castel, 2014; Bijleveld et al., 2009; Bradley et al., 2001, 2008; Buchanan et al., 2006; Fowles et al., 1982; Hochman & Yechiam, 2011; Manohar et al., 2017). Additionally, there are age-related differences in both emotion and reward processing, where older adults are more biased towards positively valenced and gain experiences, than negative/loss experiences (Barber et al., 2016; Carstensen & Mikels, 2005; Castel et al., 2016; Mikels & Reed, 2009; Mikels et al., 2016; Pachur et al., 2017; Samanez Larkin et al., 2007). This parallel may be somewhat exaggerated, however, as emotion and reward are sometimes experimentally operationalized similarly, and thus would produce similar effects in behavior. Specifically, both emotion and reward are often studied using shocks (Bauch et al., 2014; Bisby & Burgess, 2014; Dunsmoor et al., 2015; Jensen et al., 2007; Murty et al., 2012, 2011; Pessoa, 2009; Phelps & LeDoux, 2005; Redondo et al., 2014; Schmidt et al., 2015; Wang et al., 2013; Weiner & Walker, 1966), food (Beaver et al., 2006; de Water et al., 2017; Isen & Geva, 1987; LaBar et al., 2001; Polanía et al., 2015; Talmi et al., 2013; Wadlinger & Isaacowitz, 2006), emotional face pictures (Bradley et al., 1997; Lin et al., 2012; Tsukiura & Cabeza, 2008; Vrijsen et al., 2013; Vuilleumier & Schwartz, 2001; Woud et al., 2013), or erotic/sexual pictures (Attard-Johnson & Bindemann, 2017; Bradley et al., 2001; Ferrey et al., 2012; Hamann et al., 2004; Iigaya et al., 2016; Most et al., 2007; Sescousse et al., 2013a, 2010). As such, it would be expected that both emotion and reward demonstrate similar effects on cognition, as they can be studied using nearly identical experimental designs.

Despite these similarities between how emotion- and reward- processing are studied, there are also a variety of differences. Providing evidence of distinct roles of emotion and reward, when varied within the same experiment, the two factors can produce additive effects (Shigemune et al., 2010) or have otherwise been shown to separably influence behavior (Bennion et al., 2016; Bowen & Spaniol, 2017; Chiew & Braver, 2014; Isen et al., 1988; Mather & Schoeke, 2011; Otto et al., 2016). Emotion is often studied using stimuli that are inherently emotional–words, pictures, sounds, or videos that themselves semantically connote emotional content (Kensinger et al., 2007; MacKay et al., 2004; Madan et al., 2012a, 2017c; Shafer et al., 2012; Shigemune et al., 2010; Strange et al., 2003). In contrast, reward is often implemented as an instructional cue or feedback outcome (Adcock et al., 2006; Castel et al., 2002; Mason et al., 2017; Murayama & Kitagami, 2014; Murty et al., 2012; Pessiglione et al., 2007; Shigemune et al., 2010; Shohamy & Adcock, 2010; Spaniol et al., 2013). Though this dissociation is often true, there are exceptions—such as emotion studies where emotionally neutral stimuli are associated with emotional responses through a similar training task (Mather & Knight, 2008), emotional stimuli are presented just prior to the stimuli of interest (Qiao-Tasserit et al., 2017; Xie & Zhang, 2016, 2017), or with emotional stimuli are used as a feedback signal (Finn & Roediger, 2011). Similarly, in reward studies, items can be ‘trained’ to have a reward value before the task-of-interest (Anderson, 2013; Madan et al., 2012b; Madan & Spetch, 2012; Raymond & O’Brien, 2009), While a comparison of instructed vs. learned rewards has not been studied directly, there is a parallel with the literature on decisions from uncertainty. Specifically, studies have found differences in people’s risk preferences when decisions are made based on explicitly described odds and outcomes (‘decisions from description’), relative to those based on learned experiences (‘decisions from experience’) (Barron & Erev, 2003; Camilleri & Newell, 2011; Hertwig & Erev, 2009; Jessup et al., 2008; Ludvig et al., 2014; Ludvig & Spetch, 2011; Madan et al., 2017b; Mata et al., 2011; Yoon et al., 2017) (also see Braem et al., 2017).

A particularly interesting consideration when comparing the motivational characteristics of emotion and reward processing is the role of valence—emotional experiences can be either positive or negative (i.e., pleasant or unpleasant), rewards can be either gains or losses (though these could be gains and losses relative to expectations, based on either the average outcome or prior experiences). Within their respective literatures, when only one valence is included, it is often the case that only negatively valenced emotional effects are studied, whereas only gain reward outcomes are included. Given the growing literatures demonstrating valence effects in both emotion (Bowen et al., in press; Fredrickson & Branigan, 2005; Gasper & Clore, 2002; Kensinger & Corkin, 2004; Taylor, 1991; Xie & Zhang, 2016) and reward (Jensen et al., 2007; Kahneman & Tversky, 1984; Lejarraga & Hertwig, 2016; Litt et al., 2011; Ludvig et al., 2014; Samanez Larkin et al., 2007) effects on cognition, it is important to be aware of this limitation when only one valence is included in an experimental design. Motivation more generally can also be valenced, as a continuum of approach vs. avoidance motivation (Braver et al., 2014; Gable & Harmon-Jones, 2010; Kaplan et al., 2012; Murty et al., 2011; Vrijsen et al., 2013; Woud et al., 2013). Critically, this valence dimension of motivation does not directly map onto the valence of emotions or rewards. For instance, both anger and determination can be considered an approach motivation, while fear corresponds with avoidance (Carver & Harmon-Jones, 2009; Harmon-Jones et al., 2011, 2013).

Within the domain of rewards, there are a multitude of forms that a reward can take. Monetary rewards are the most common type of incentive; the use of shocks, and thus the avoidance of punishment, is also used often. However, it is important to consider that other rewards may yield different effects on cognition. Rather than examining these different rewards in isolation, a subset of studies have taken the approach of comparing their effects, or putting them in conflict. For instance, some studies have examined the motivational effects of monetary reward alongside another reward-related stimuli type, such as an appetitive juice reinforcer (Beck et al., 2010; Krug & Braver, 2014; Yee et al., 2016) or pain induction (Delgado et al., 2011; Murty et al., 2011; Read & Loewenstein, 1999; Talmi et al., 2009; Vlaev et al., 2014, 2009; Zhou & Gao, 2008). Other studies use what could be broadly considered a social reward, such as smiling face (Lin et al., 2012), indicator of social status (Izuma et al., 2008; Zink et al., 2008), or erotic pictures (Iigaya et al., 2016; Sescousse et al., 2013a, b). Additionally, some studies have investigated the motivational role of monetary feedback relative to verbal praise (e.g., “Very well done!”, “Great job!”) (Albrecht et al., 2014; Deci, 1971, 1972; Williams & DeSteno, 2008) though comparisons between reward categories have also been studied (Gross et al., 2014; Roper & Vecera, 2016; Rosati & Hare, 2016).

Other motivational factors

The extent of motivation on cognition is not constrained to emotion and reward. From the current perspective, other factors that lead to selective prioritization of cognitive processes also include the influences of motoric and self-referential processing.

While it is clear that emotion- and reward-related information are preferentially processed and modulate cognitive processes, it is likely less obvious that this may also be true for motor movements. It can be argued that the entire purpose of the brain is to produce movement–the ‘motor chauvinist’ view (Wolpert et al., 2001), a particularly strong perspective within the scope of embodied cognition. While this is an extreme stance, there is evidence that motor processes–such as enacted actions, gestures, and exercise–are beneficial to cognitive processes (Madan & Singhal, 2012b, c). Here motoric processing can be viewed as a type of goal-oriented behavior and in alignment with an approach motivation. A number of more subtle manipulations have demonstrated that cognitive processes can cue motor representations and influence motor movements, and that motor representations can modulate performance in cognitive tasks. For instance, in a simple task involving reaching for blocks and picking them up, grasping kinematics are influenced by text printed on the blocks, such as ‘long’ or ‘short’, as well as by words representing relative large or small objects (e.g., ‘apple’ or ‘grape’) (Gentilucci et al., 2000; Gentilucci & Gangitano, 1998; Glover et al., 2004). In the opposite direction, motor congruency of objects and pictures of objects, such as the side of a handle can influence response time and other measures in cognitive tasks (Brouillet et al., 2015; Buccino et al., 2009; Chum et al., 2007; Handy et al., 2003; Marino et al., 2014; Oakes & Onyper, 2017; Tucker & Ellis, 1998). Even more broadly, words and pictures representing objects varying in functionality can influence attention, semantic processing, and memory (Hauk et al., 2004; Madan et al., 2016; Madan & Singhal, 2012a; Montefinese et al., 2013; Pulvermüller, 2005; Shebani & Pulvermüller, 2013; Tousignant & Pexman, 2012; Witt et al., 2010). These effects are particularly interesting given debates regarding the role of evoked motor functionality information in response to pictures and words, as opposed to physical objects (Skiba & Snow, 2016; Snow et al., 2011, 2014; Squires et al., 2016; Wilson & Golonka, 2013). Taken together, functional objects can also capture attention, interfere with concurrent processes, and elicit approach motivation responses in ways that share commonalities with emotion and reward processes.

Self-referential processing can also be considered subset of motivated cognition. Unlike emotion-, reward-, and motor-processing, which are properties of the stimuli or how they are attended to, self-relevance is a property of the stimuli’s congruence with the participant. Often self relevance is studied using words that relate to the participant, such as personality trait adjectives (e.g., ‘curious’, ‘stingy’) (Fujiwara et al., 2008; Gutchess et al., 2007; Rogers et al., 1977; Symons & Johnson, 1997; Wentura et al., 2000) or autobiographical words (e.g., hometown, high school) (Gray et al., 2004; Yamawaki et al., in press). In other studies, self relevance is experimentally assigned, such as using sentences that refer to either ‘you’ or another person (Fields & Kuperberg, 2012) or by assigning the ownership of presented objects to the participant or ‘other’ (Cunningham et al., 2008; DeScioli et al., 2015; Truong et al., 2016, 2017). (See Northoff et al., 2006, for a review.) In some ways these two approaches align with the distinction outlined with emotion and reward studies, where the property can either be congruence between self and the stimuli (personality trait adjectives) or implemented as part of the task instructions (assigned ownership). Similar to both emotion and reward, self-referential stimuli can also elicit attentional capture (Alexopoulos et al., 2012; Arnell et al., 1999; Bargh, 1982; Tacikowski & Nowicka, 2010). This is particularly well exemplified by the ‘cocktail party effect,’ where people are able to focus on a particular conversation amidst a variety of concurrent sounds, but can readily and automatically attend to a different conversation if their name is mentioned (Conway et al., 2001; Moray, 1959; Wood & Cowan, 1995). Nonetheless, prior work has demonstrated that the effects of self-referential processing can be dissociated from reward (Northoff & Hayes, 2011) and emotion (Fields & Kuperberg, 2012, 2016; Grilli et al., in press; Kensinger & Gutchess, 2016) processes. In some studies, social cues have been used analogously to rewards, such as trial feedback (Anderson, 2016b, 2017) or in association with other stimuli, such as faces, as a signal for importance (Hargis & Castel, in press). More broadly, it has been shown that people exhibit a bias to pay more attention to pictures of their enemies and incidentally remembered more information about their enemies (Li et al., in press). Along this social dimension, people have also been found to have an ‘own-race bias,’ where people remembered faces of individuals of the same racial background better than those of another race (DeLozier & Rhodes, 2015). To some degree, cultural differences in attention and memory may also be influenced by collective self-referential effects, where cultural background leads to inter-individual differences in how contextual information is prioritized and attended to (Lin & Han, 2009; Masuda & Nisbett, 2001; Millar et al., 2013). In sum, studies of self-referential processing have demonstrated that we have a bias towards stimuli that correspond to ownership or our identity. The design of these self-referential studies share many commonalities with emotion and reward, in operationalization and in their observed influence on cognitive processing, providing additional support for a domain-general view of motivation-cognition interactions and goal-oriented behavior.

Importantly, the factors discussed thus far are not intended to be an exhaustive list of motivational factors known to influence cognitive processes. Beyond motoric and self-referential processing, numerous other distinct factors can also be construed as being instances of motivated cognition. For instance, people have also been shown to be able to prioritize memory for words representing allergens and medication side-effects that were instructed to be more severe (Friedman et al., 2015; Middlebrooks et al., 2016), similar to prior prioritization studies that used reward values (Castel et al., 2002). It has also been shown in a number of studies that words processed with their survival relevance in-mind are remembered better than in the context of several other instructions (Kang et al., 2008; Nairne & Pandeirada, 2008; Nairne et al., 2008, 2007; Soderstrom & McCabe, 2011; Weinstein et al., 2008). Food stimuli, briefly discussed as being used in both studies of emotion and reward, have also been studied in their own right as a means of probing motivational processes, particularly with interest in time-varying differences in motivation through satiation (Radel & Clément-Guillotin, 2012; Skrynka & Vincent, 2017; Wagner et al., 2012) and other measures of physiological homeostasis (Padulo et al., 2017; Tiedemann et al., 2017).


In sum, it is clear that motivation can guide cognition. These motivational factors–including, but not limited to, emotion and reward processes—modulate behavior across a variety of cognitive domains, often resulting in the prioritized processing of some stimuli. Nonetheless, many of the nuances of these motivation-cognition interactions have yet to be sufficiently understood. One general question is the specificity of these different motivational factors in modulating cognition. For instance, how much of what is known about the effects of emotion on memory can be considered domain-general characteristics of motivational salience and valence, rather than domain-specific effects of emotion? Along these lines, it is clear that emotion and reward, among other factors, necessitate unique research approaches (Gershman & Daw, 2017; Mattek et al., 2017; Panksepp et al., 2017; Schultz, 2015), but it is an open question where the boundaries lie between these different facets of motivation. More broadly, while the position of this perspective paper is that these factors can be summarized as ‘motivational factors’ despite a variety of differences–this is far from conclusive. It is well-established that there are different mechanisms and brain structures associated with these factors, but there nonetheless is a substantiative number of commonalities between them as well. My hope is that this perspective article will provide a new lens evaluate existing research and help to inspire further research to better understand how these constructs relate to each other.

Associated with this Perspective article is a new ‘research nexus’ at Collabra: Psychology, focused on fostering future research into motivated cognition. Briefly, a research nexus is similar to a special issue/collection in a journal, but in addition to invited authors and articles, the nexus will remain open for submissions, in order to create a growing collection of articles around the topic. In this newly launched research nexus, we welcome research into any individual motivational factor and their influence on cognition, as well as studies that compare or otherwise investigate the interactions between different motivational factors. While the perspective outlined here is suggestive that nearly all of cognition is motivated, manuscripts submitted to this research nexus must explicitly discuss how their research question and findings inform our understanding of the influence of motivation on cognition. Studies comparing different motivational factors are of particular interest, as this work is ultimately necessary to address open questions regarding the overlap or diversity in how different factors influence cognition.


I would like to thank Ryan Daley, Elizabeth, Kensinger, John Ksander, and Debbie Yee for feedback on an earlier draft of the manuscript.

Competing Interests

Christopher Madan is an Editor at Collabra: Psychology. He was not involved in the peer review of the article.


  1. Aarts, H., Custers, R. and Marien, H. (2008). Preparing and motivating behavior outside of awareness. Science 319: 1639–1639, DOI: 

  2. Abercrombie, H. C., Chambers, A. S., Greischar, L. and Monticelli, R. M. (2008). Orienting, emotion, and memory: phasic and tonic variation in heart rate predicts memory for emotional pictures in men. Neurobiology of Learning and Memory 90: 644–650, DOI: 

  3. Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B. and Gabrieli, J. D. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron 50: 507–517, DOI: 

  4. Albrecht, K., Abeler, J., Weber, B. and Falk, A. (2014). The brain correlates of the effects of monetary and verbal rewards on intrinsic motivation. Frontiers in Neuroscience 8: 303.DOI: 

  5. Alexopoulos, T., Muller, D., Ric, F. and Marendaz, C. (2012). I, me, mine: Automatic attentional capture by self-related stimuli. European Journal of Social Psychology 42: 770–779, DOI: 

  6. Anderson, A. K. (2005). Affective influences on the attentional dynamics supporting awareness. Journal of Experimental Psychology: General 134: 258–281, DOI: 

  7. Anderson, B. A. (2013). A value-driven mechanism of attentional selection. Journal of Vision 13: 7–7, DOI: 

  8. Anderson, B. A. (2016a). The attention habit: how reward learning shapes attentional selection. Annals of the New York Academy of Sciences 1369: 24–39, DOI: 

  9. Anderson, B. A. (2016b). Social reward shapes attentional biases. Cognitive Neuroscience 7: 30–36, DOI: 

  10. Anderson, B. A. (2017). Counterintuitive effects of negative social feedback on attention. Cognition and Emotion 31: 590–597, DOI: 

  11. Anderson, B. A. and Yantis, S. (2013). Persistence of value-driven attentional capture. Journal of Experimental Psychology: Human Perception and Performance 39: 6–9, DOI: 

  12. Ariel, R. and Castel, A. D. (2014). Eyes wide open: enhanced pupil dilation when selectively studying important information. Experimental Brain Research 232: 337–344, DOI: 

  13. Arnell, K. M., Killman, K. V. and Fijavz, D. (2007). Blinded by emotion: Target misses follow attention capture by arousing distractors in RSVP. Emotion 7: 465–477, DOI: 

  14. Arnell, K. M., Shapiro, K. L. and Sorensen, R. E. (1999). Reduced repetition blindness for one’s own name. Visual Cognition 6: 609–635, DOI: 

  15. Attard-Johnson, J. and Bindemann, M. (2017). Sex-specific but not sexually explicit: pupillary responses to dressed and naked adults. Royal Society Open Science 4: 160963.DOI: 

  16. Awh, E., Belopolsky, A. V. and Theeuwes, J. (2012). Top–down versus bottom–up attentional control: a failed theoretical dichotomy. Trends in Cognitive Sciences 16: 437–443, DOI: 

  17. Barber, S. J., Opitz, P. C., Martins, B., Sakaki, M. and Mather, M. (2016). Thinking about a limited future enhances the positivity of younger and older adults’ recall: Support for socioemotional selectivity theory. Memory & Cognition 44: 869–882, DOI: 

  18. Bargh, J. A. (1982). Attention and automaticity in the processing of self-relevant information. Journal of Personality and Social Psychology 43: 425–436, DOI: 

  19. Barron, G. and Erev, I. (2003). Small feedback-based decisions and their limited correspondence to description-based decisions. Journal of Behavioral Decision Making 16: 215–233, DOI: 

  20. Bauch, E. M., Rausch, V. H. and Bunzeck, N. (2014). Pain anticipation recruits the mesolimbic system and differentially modulates subsequent recognition memory. Human Brain Mapping 35: 4594–4606, DOI: 

  21. Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A. and Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. Journal of Neuroscience 26: 5160–5166, DOI: 

  22. Beck, S. M., Locke, H. S., Savine, A. C., Jimura, K. and Braver, T. S. (2010). Primary and secondary rewards differentially modulate neural activity dynamics during working memory. PLoS ONE 5: e9251.DOI: 

  23. Bennion, K. A., Payne, J. D. and Kensinger, E. A. (2016). The impact of napping on memory for future-relevant stimuli: Prioritization among multiple salience cues. Behavioral Neuroscience 130: 281–289, DOI: 

  24. Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior 81: 179–209, DOI: 

  25. Bijleveld, E., Custers, R. and Aarts, H. (2009). The unconscious eye opener. Psychological Science 20: 1313–1315, DOI: 

  26. Bisby, J. A. and Burgess, N. (2014). Negative affect impairs associative memory but not item memory. Learning & Memory 21: 760–766, DOI: 

  27. Bocanegra, B. R. and Zeelenberg, R. (2009). Dissociating emotion-induced blindness and hypervision. Emotion 9: 865–873, DOI: 

  28. Bohn, A. and Berntsen, D. (2007). Pleasantness bias in flashbulb memories: Positive and negative flashbulb memories of the fall of the berlin wall among east and west germans. Memory & Cognition 35: 565–577, DOI: 

  29. Botvinick, M. and Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology 66: 83–113, DOI: 

  30. Bowen, H. J., Kark, S. M. and Kensinger, E. A. (). NEVER forget: negative emotional valence enhances recapitulation. Psychonomic Bulletin & Review, DOI: (in press). 

  31. Bowen, H. J. and Spaniol, J. (2017). Effects of emotion and motivation on memory dissociate in the context of losses. Learning and Motivation 58: 77–87, DOI: 

  32. Bradley, B. P., Mogg, K., Millar, N., Bonham-Carter, C., Fergusson, E., Jenkins, J. and Parr, M. (1997). Attentional biases for emotional faces. Cognition & Emotion 11: 25–42, DOI: 

  33. Bradley, M. M., Codispoti, M., Cuthbert, B. N. and Lang, P. J. (2001). Emotion and motivation i: Defensive and appetitive reactions in picture processing. Emotion 1: 276–298, DOI: 

  34. Bradley, M. M., Miccoli, L., Escrig, M. A. and Lang, P. J. (2008). The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology 45: 602–607, DOI: 

  35. Braem, S., Houwer, J. D., Demanet, J., Yuen, K. S., Kalisch, R. and Brass, M. (2017). Pattern analyses reveal separate experience based fear memories in the human right amygdala. The Journal of Neuroscience 37: 8116–8130, DOI: 

  36. Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., Adcock, R. A., Barch, D. M., Botvinick, M. M., Carver, C. S., Cools, R., Custers, R., Dickinson, A., Dweck, C. S., Fishbach, A., Gollwitzer, P. M., Hess, T. M., Isaacowitz, D. M., Mather, M., Murayama, K., Pessoa, L., Samanez-Larkin, G. R. and Somerville, L. H. (2014). Mechanisms of motivation–cognition interaction: challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience 14: 443–472, DOI: 

  37. Brouillet, D., Brouillet, T., Milhau, A., Heurley, L., Vagnot, C. and Brunel, L. (2015). Word-to-picture recognition is a function of motor components mappings at the stage of retrieval. International Journal of Psychology 51: 397–402, DOI: 

  38. Brown, R. and Kulik, J. (1977). Flashbulb memories. Cognition 5: 73–99, DOI: 

  39. Buccino, G., Sato, M., Cattaneo, L., Rodà, F. and Riggio, L. (2009). Broken affordances, broken objects: A TMS study. Neuropsychologia 47: 3074–3078, DOI: 

  40. Buchanan, T. W., Etzel, J. A., Adolphs, R. and Tranel, D. (2006). The influence of autonomic arousal and semantic relatedness on memory for emotional words. International Journal of Psychophysiology 61: 26–33, DOI: 

  41. Bucker, B. and Theeuwes, J. (2017). Pavlovian reward learning underlies value driven attentional capture. Attention, Perception, & Psychophysics 79: 415–428, DOI: 

  42. Camilleri, A. R. and Newell, B. R. (2011). When and why rare events are underweighted: A direct comparison of the sampling, partial feedback, full feedback and description choice paradigms. Psychonomic Bulletin & Review 18: 377–384, DOI: 

  43. Carstensen, L. L. and Mikels, J. A. (2005). At the intersection of emotion and cognition. Current Directions in Psychological Science 14: 117–121, DOI: 

  44. Carver, C. S. and Harmon-Jones, E. (2009). Anger is an approach-related affect: Evidence and implications. Psychological Bulletin 135: 183–204, DOI: 

  45. Castel, A. D., Benjamin, A. S., Craik, F. I. M. and Watkins, M. J. (2002). The effects of aging on selectivity and control in short-term recall. Memory & Cognition 30: 1078–1085, DOI: 

  46. Castel, A. D., Friedman, M. C., McGillivray, S., Flores, C. C., Murayama, K., Kerr, T. and Drolet, A. (2016). I owe you: age-related similarities and differences in associative memory for gains and losses. Aging, Neuropsychology, and Cognition 23: 549–565, DOI: 

  47. Chiew, K. S. and Braver, T. S. (2011). Positive affect versus reward: Emotional and motivational influences on cognitive control. Frontiers in Psychology 2: 279.DOI: 

  48. Chiew, K. S. and Braver, T. S. (2014). Dissociable influences of reward motivation and positive emotion on cognitive control. Cognitive, Affective, & Behavioral Neuroscience 14: 509–529, DOI: 

  49. Christianson, S.-Å. (1992). Emotional stress and eyewitness memory: A critical review. Psychological Bulletin 112: 284–309, DOI: 

  50. Chum, M., Bekkering, H., Dodd, M. D. and Pratt, J. (2007). Motor and visual codes interact to facilitate visuospatial memory performance. Psychonomic Bulletin & Review 14: 1189–1193, DOI: 

  51. Conway, A. R. A., Cowan, N. and Bunting, M. F. (2001). The cocktail party phenomenon revisited: The importance of working memory capacity. Psychonomic Bulletin & Review 8: 331–335, DOI: 

  52. Cunningham, S. J., Turk, D. J., Macdonald, L. M. and Macrae, C. N. (2008). Yours or mine? ownership and memory. Consciousness and Cognition 17: 312–318, DOI: 

  53. Cunningham, W. A. and Brosch, T. (2012). Motivational salience: Amygdala tuning from traits, needs, values, and goals. Current Directions in Psychological Science 21: 54–59, DOI: 

  54. Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology 18: 105–115, DOI: 

  55. Deci, E. L. (1972). The effects of contingent and noncontingent rewards and controls on intrinsic motivation. Organizational Behavior and Human Performance 8: 217–229, DOI: 

  56. Delgado, M. R., Jou, R. L. and Phelps, E. A. (2011). Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers. Frontiers in Neuroscience 5: 71.DOI: 

  57. DeLozier, S. and Rhodes, M. G. (2015). The impact of value-directed remembering on the own-race bias. Acta Psychologica 154: 62–68, DOI: 

  58. DeScioli, P., Rosa, N. M. and Gutchess, A. H. (2015). A memory advantage for property. Evolutionary Psychology 13: 411–423, DOI: 

  59. de Water, E., Mies, G. W., Figner, B., Yoncheva, Y., van den Bos, W., Castellanos, F. X., Cillessen, A. H. N. and Scheres, A. (2017). Neural mechanisms of individual differences in temporal discounting of monetary and primary rewards in adolescents. NeuroImage 153: 198–210, DOI: 

  60. Dewhurst, S. A. and Parry, L. A. (2000). Emotionality, distinctiveness, and recollective experience. European Journal of Cognitive Psychology 12: 541–551, DOI: 

  61. Dolcos, F., Iordan, A. D. and Dolcos, S. (2011). Neural correlates of emotion–cognition interactions: A review of evidence from brain imaging investigations. Journal of Cognitive Psychology 23: 669–694, DOI: 

  62. Dunsmoor, J. E., Murty, V. P., Davachi, L. and Phelps, E. A. (2015). Emotional learning selectively and retroactively strengthens memories for related events. Nature 520: 345–348, DOI: 

  63. Easterbrook, J. A. (1959). The effect of emotion on cue utilization and the organization of behavior. Psychological Review 66: 183–201, DOI: 

  64. Fawcett, J. M., Russell, E. J., Peace, K. A. and Christie, J. (2013). Of guns and geese: a meta-analytic review of the ‘weapon focus’ literature. Psychology, Crime & Law 19: 35–66, DOI: 

  65. Ferrey, A. E., Frischen, A. and Fenske, M. J. (2012). Hot or not: Response inhibition reduces the hedonic value and motivational incentive of sexual stimuli. Frontiers in Psychology 3: 575.DOI: 

  66. Fields, E. C. and Kuperberg, G. R. (2012). It’s all about you: An ERP study of emotion and self-relevance in discourse. NeuroImage 62: 562–574, DOI: 

  67. Fields, E. C. and Kuperberg, G. R. (2016). Dynamic effects of self-relevance and task on the neural processing of emotional words in context. Frontiers in Psychology 6: 2003.DOI: 

  68. Finn, B. and Roediger, H. L. (2011). Enhancing retention through reconsolidation. Psychological Science 22: 781–786, DOI: 

  69. Fowles, D. C., Fisher, A. E. and Tranel, D. T. (1982). The heart beats to reward: The effect of monetary incentive on heart rate. Psychophysiology 19: 506–513, DOI: 

  70. Fredrickson, B. L. and Branigan, C. (2005). Positive emotions broaden the scope of attention and thought-action repertoires. Cognition & Emotion 19: 313–332, DOI: 

  71. Friedman, M. C., McGillivray, S., Murayama, K. and Castel, A. D. (2015). Memory for medication side effects in younger and older adults: The role of subjective and objective importance. Memory & Cognition 43: 206–215, DOI: 

  72. Fujiwara, E., Levine, B. and Anderson, A. K. (2008). Intact implicit and reduced explicit memory for negative self-related information in repressive coping. Cognitive, Affective, & Behavioral Neuroscience 8: 254–263, DOI: 

  73. Gable, P. and Harmon-Jones, E. (2010). The motivational dimensional model of affect: Implications for breadth of attention, memory, and cognitive categorisation. Cognition & Emotion 24: 322–337, DOI: 

  74. Gasper, K. and Clore, G. L. (2002). Attending to the big picture: Mood and global versus local processing of visual information. Psychological Science 13: 34–40, DOI: 

  75. Gentilucci, M., Benuzzi, F., Bertolani, L., Daprati, E. and Gangitano, M. (2000). Language and motor control. Experimental Brain Research 133: 468–490, DOI: 

  76. Gentilucci, M. and Gangitano, M. (1998). Influence of automatic word reading on motor control. European Journal of Neuroscience 10: 752–756, DOI: 

  77. Gershman, S. J. and Daw, N. D. (2017). Reinforcement learning and episodic memory in humans and animals: An integrative framework. Annual Review of Psychology 68: 101–128, DOI: 

  78. Glover, S., Rosenbaum, D. A., Graham, J. and Dixon, P. (2004). Grasping the meaning of words. Experimental Brain Research 154: 103–108, DOI: 

  79. Gray, H. M., Ambady, N., Lowenthal, W. T. and Deldin, P. (2004). P300 as an index of attention to self-relevant stimuli. Journal of Experimental Social Psychology 40: 216–224, DOI: 

  80. Grilli, M. D., Woolverton, C. B., Crawford, M. and Glisky, E. L. (). Self-reference and emotional memory effects in older adults at increased genetic risk of alzheimer’s disease. Aging, Neuropsychology, and Cognition, DOI: (in press). 

  81. Gross, J., Woelbert, E., Zimmermann, J., Okamoto-Barth, S., Riedl, A. and Goebel, R. (2014). Value signals in the prefrontal cortex predict individual preferences across reward categories. Journal of Neuroscience 34: 7580–7586, DOI: 

  82. Gutchess, A. H., Kensinger, E. A., Yoon, C. and Schacter, D. L. (2007). Ageing and the self-reference effect in memory. Memory 15: 822–837, DOI: 

  83. Hamann, S., Herman, R. A., Nolan, C. L. and Wallen, K. (2004). Men and women differ in amygdala response to visual sexual stimuli. Nature Neuroscience 7: 411–416, DOI: 

  84. Handy, T. C., Grafton, S. T., Shroff, N. M., Ketay, S. and Gazzaniga, M. S. (2003). Graspable objects grab attention when the potential for action is recognized. Nature Neuroscience 6: 421–427, DOI: 

  85. Hargis, M. B. and Castel, A. D. (). Younger and older adults’ associative memory for social information: The role of information importance. Psychology and Aging 32: 325–330, DOI: (in press). 

  86. Harmon-Jones, C., Schmeichel, B. J., Mennitt, E. and Harmon-Jones, E. (2011). The expression of determination: Similarities between anger and approach-related positive affect. Journal of Personality and Social Psychology 100: 172–181, DOI: 

  87. Harmon-Jones, E., Gable, P. A. and Price, T. F. (2012a). The influence of affective states varying in motivational intensity on cognitive scope. Frontiers in Integrative Neuroscience 6DOI: 

  88. Harmon-Jones, E., Gable, P. A. and Price, T. F. (2012b). The influence of affective states on cognitive broadening/narrowing: Considering the importance of motivational intensity. Social and Personality Psychology Compass 6: 314–327, DOI: 

  89. Harmon-Jones, E., Gable, P. A. and Price, T. F. (2013). Does negative affect always narrow and positive affect always broaden the mind? considering the influence of motivational intensity on cognitive scope. Current Directions in Psychological Science 22: 301–307, DOI: 

  90. Hassin, R. R., Aarts, H., Eitam, B., Custers, R. and Kleiman, T. (2009). Non-conscious goal pursuit and the effortful control of behavior In: Oxford handbook of human action. New York: Oxford University Press, pp. 549–566.  

  91. Hauk, O., Johnsrude, I. and Pulvermüller, F. (2004). Somatotopic representation of action words in human motor and premotor cortex. Neuron 41: 301–307, DOI: 

  92. Hertwig, R. and Erev, I. (2009). The description–experience gap in risky choice. Trends in Cognitive Sciences 13: 517–523, DOI: 

  93. Hirst, W., Phelps, E. A., Buckner, R. L., Budson, A. E., Cuc, A., Gabrieli, J. D. E., Johnson, M. K., Lustig, C., Lyle, K. B., Mather, M., Meksin, R., Mitchell, K. J., Ochsner, K. N., Schacter, D. L., Simons, J. S. and Vaidya, C. J. (2009). Long-term memory for the terrorist attack of september 11: Flashbulb memories, event memories, and the factors that influence their retention. Journal of Experimental Psychology: General 138: 161–176, DOI: 

  94. Hochman, G. and Yechiam, E. (2011). Loss aversion in the eye and in the heart: The autonomic nervous system’s responses to losses. Journal of Behavioral Decision Making 24: 140–156, DOI: 

  95. Hughes, B. L. and Zaki, J. (2015). The neuroscience of motivated cognition. Trends in Cognitive Sciences 19: 62–64, DOI: 

  96. Iigaya, K., Story, G. W., Kurth-Nelson, Z., Dolan, R. J. and Dayan, P. (2016). The modulation of savouring by prediction error and its effects on choice. eLife 5: e13747.DOI: 

  97. Isen, A. M. and Geva, N. (1987). The influence of positive affect on acceptable level of risk: The person with a large canoe has a large worry. Organizational Behavior and Human Decision Processes 39: 145–154, DOI: 

  98. Isen, A. M., Nygren, T. E. and Ashby, F. G. (1988). Influence of positive affect on the subjective utility of gains and losses: It is just not worth the risk. Journal of Personality and Social Psychology 55: 710–717, DOI: 

  99. Izuma, K., Saito, D. N. and Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron 58: 284–294, DOI: 

  100. Jensen, J., Smith, A. J., Willeit, M., Crawley, A. P., Mikulis, D. J., Vitcu, I. and Kapur, S. (2007). Separate brain regions code for salience vs. valence during reward prediction in humans. Human Brain Mapping 28: 294–302, DOI: 

  101. Jessup, R. K., Bishara, A. J. and Busemeyer, J. R. (2008). Feedback produces divergence from prospect theory in descriptive choice. Psychological Science 19: 1015–1022, DOI: 

  102. Kahneman, D., Fredrickson, B. L., Schreiber, C. A. and Redelmeier, D. A. (1993). When more pain is preferred to less: Adding a better end. Psychological Science 4: 401–405, DOI: 

  103. Kahneman, D. and Tversky, A. (1984). Choices, values, and frames. American Psychologist 39: 341–350, DOI: 

  104. Kang, S. H. K., McDermott, K. B. and Cohen, S. M. (2008). The mnemonic advantage of processing fitness-relevant information. Memory & Cognition 36: 1151–1156, DOI: 

  105. Kaplan, R. L., Damme, I. V. and Levine, L. J. (2012). Motivation matters: Differing effects of pre-goal and post-goal emotions on attention and memory. Frontiers in Psychology 3DOI: 

  106. Kensinger, E. A. and Corkin, S. (2004). Two routes to emotional memory: Distinct neural processes for valence and arousal. Proceedings of the National Academy of Sciences 101: 3310–3315, DOI: 

  107. Kensinger, E. A., Garoff-Eaton, R. J. and Schacter, D. L. (2007). Effects of emotion on memory specificity: Memory trade-offs elicited by negative visually arousing stimuli. Journal of Memory and Language 56: 575–591, DOI: 

  108. Kensinger, E. A. and Gutchess, A. H. (2016). Cognitive aging in a social and affective context: Advances over the past 50 years. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 72: 61–70, DOI: 

  109. Kleinginna, P. R. Jr. and Kleinginna, A. M. (1981). A categorized list of motivation definitions, with a suggestion for a consensual definition. Motivation and Emotion 5: 263–291, DOI: 

  110. Krug, M. K. and Braver, T. S. (2014). Motivation and cognitive control: Going beyond monetary incentives In: The Psychological Science of Money. Springer, pp. 137–162, DOI: 

  111. LaBar, K. S., Gitelman, D. R., Parrish, T. B., Kim, Y.-H., Nobre, A. C. and Mesulam, M.-M. (2001). Hunger selectively modulates corticolimbic activation to food stimuli in humans. Behavioral Neuroscience 115: 493–500, DOI: 

  112. Lejarraga, T. and Hertwig, R. (2016). How the threat of losses makes people explore more than the promise of gains. Psychonomic Bulletin & Review 24: 708–720, DOI: 

  113. Li, L. M. W., Masuda, T. and Lee, H. (). Low relational mobility leads to greater motivation to understand enemies but not friends and acquaintances. British Journal of Social Psychology, DOI: (in press). 

  114. Lin, A., Adolphs, R. and Rangel, A. (2012). Social and monetary reward learning engage overlapping neural substrates. Social Cognitive and Affective Neuroscience 7: 274–281, DOI: 

  115. Lin, Z. and Han, S. (2009). Self-construal priming modulates the scope of visual attention. Quarterly Journal of Experimental Psychology 62: 802–813, DOI: 

  116. Litt, A., Plassmann, H., Shiv, B. and Rangel, A. (2011). Dissociating valuation and saliency signals during decision-making. Cerebral Cortex 21: 95–102, DOI: 

  117. Loftus, E. F., Loftus, G. R. and Messo, J. (1987). Some facts about “weapon focus”. Law and Human Behavior 11: 55–62, DOI: 

  118. Ludvig, E. A., Madan, C. R. and Spetch, M. L. (2014). Extreme outcomes sway risky decisions from experience. Journal of Behavioral Decision Making 27: 146–156, DOI: 

  119. Ludvig, E. A. and Spetch, M. L. (2011). Of black swans and tossed coins: Is the description-experience gap in risky choice limited to rare events?. PLoS ONE 6: e20262.DOI: 

  120. MacKay, D. G., Shafto, M., Taylor, J. K., Marian, D. E., Abrams, L. and Dyer, J. R. (2004). Relations between emotion, memory, and attention: Evidence from taboo stroop, lexical decision, and immediate memory tasks. Memory & Cognition 32: 474–488, DOI: 

  121. Madan, C. R. (2013). Toward a common theory for learning from reward, affect, and motivation: the SIMON framework. Frontiers in Systems Neuroscience 7DOI: 

  122. Madan, C. R., Caplan, J. B., Lau, C. S. and Fujiwara, E. (2012a). Emotional arousal does not enhance association-memory. Journal of Memory and Language 66: 695–716, DOI: 

  123. Madan, C. R., Chen, Y. Y. and Singhal, A. (2016). ERPs differentially reflect automatic and deliberate processing of the functional manipulability of objects. Frontiers in Human Neuroscience 10DOI: 

  124. Madan, C. R., Fujiwara, E., Caplan, J. B. and Sommer, T. (2017a). Emotional arousal impairs association-memory: Roles of amygdala and hippocampus. NeuroImage 156: 14–28, DOI: 

  125. Madan, C. R., Fujiwara, E., Gerson, B. C. and Caplan, J. B. (2012b). High reward makes items easier to remember, but harder to bind to a new temporal context. Frontiers in Integrative Neuroscience 6DOI: 

  126. Madan, C. R., Ludvig, E. A. and Spetch, M. L. (2014). Remembering the best and worst of times: Memories for extreme outcomes bias risky decisions. Psychonomic Bulletin & Review 21: 629–636, DOI: 

  127. Madan, C. R., Ludvig, E. A. and Spetch, M. L. (2017b). The role of memory in distinguishing risky decisions from experience and description. Quarterly Journal of Experimental Psychology 70: 2048–2059, DOI: 

  128. Madan, C. R., Shafer, A. T., Chan, M. and Singhal, A. (2017c). Shock and awe: Distinct effects of taboo words on lexical decision and free recall. Quarterly Journal of Experimental Psychology 70: 793–810, DOI: 

  129. Madan, C. R. and Singhal, A. (2012a). Encoding the world around us: Motor-related processing influences verbal memory. Consciousness and Cognition 21: 1563–1570, DOI: 

  130. Madan, C. R. and Singhal, A. (2012b). Motor imagery and higher-level cognition: four hurdles before research can sprint forward. Cognitive Processing 13: 211–229, DOI: 

  131. Madan, C. R. and Singhal, A. (2012c). Using actions to enhance memory: effects of enactment, gestures, and exercise on human memory. Frontiers in Psychology 3DOI: 

  132. Madan, C. R. and Spetch, M. L. (2012). Is the enhancement of memory due to reward driven by value or salience?. Acta Psychologica 139: 343–349, DOI: 

  133. Manohar, S. G., Finzi, R. D., Drew, D. and Husain, M. (2017). Distinct motivational effects of contingent and noncontingent rewards. Psychological Science 28: 1016–1026, DOI: 

  134. Marino, B. F. M., Sirianni, M., Volta, R. D., Magliocco, F., Silipo, F., Quattrone, A. and Buccino, G. (2014). Viewing photos and reading nouns of natural graspable objects similarly modulate motor responses. Frontiers in Human Neuroscience, : 8.DOI: 

  135. Mason, A., Farrell, S., Howard-Jones, P. and Ludwig, C. J. (2017). The role of reward and reward uncertainty in episodic memory. Journal of Memory and Language 96: 62–77, DOI: 

  136. Masuda, T. and Nisbett, R. E. (2001). Attending holistically versus analytically: Comparing the context sensitivity of Japanese and americans. Journal of Personality and Social Psychology 81: 922–934, DOI: 

  137. Mata, R., Josef, A. K., Samanez-Larkin, G. R. and Hertwig, R. (2011). Age differences in risky choice: a meta-analysis. Annals of the New York Academy of Sciences 1235: 18–29, DOI: 

  138. Mather, M. and Knight, M. (2008). The emotional harbinger effect: Poor context memory for cues that previously predicted something arousing. Emotion 8: 850–860, DOI: 

  139. Mather, M. and Schoeke, A. (2011). Positive outcomes enhance incidental learning for both younger and older adults. Frontiers in Neuroscience 5DOI: 

  140. Mather, M. and Sutherland, M. R. (2011). Arousal-biased competition in perception and memory. Perspectives on Psychological Science 6: 114–133, DOI: 

  141. Mattek, A. M., Wolford, G. L. and Whalen, P. J. (2017). A mathematical model captures the structure of subjective affect. Perspectives on Psychological Science 12: 508–526, DOI: 

  142. Middlebrooks, C. D., McGillivray, S., Murayama, K. and Castel, A. D. (2016). Memory for allergies and health foods: How younger and older adults strategically remember critical health information. Journals of Gerontology Series B: Psychological Sciences and Social Sciences 71: 389–399, DOI: 

  143. Mikels, J. A. and Reed, A. E. (2009). Monetary losses do not loom large in later life: Age differences in the framing effect. Journals of Gerontology Series B: Psychological Sciences and Social Sciences 64B: 457–460, DOI: 

  144. Mikels, J. A., Shuster, M. M., Thai, S. T., Smith-Ray, R., Waugh, C. E., Roth, K., Keilly, A. and Stine-Morrow, E. A. L. (2016). Messages that matter: Age differences in affective responses to framed health messages. Psychology and Aging 31: 409–414, DOI: 

  145. Millar, P. R., Serbun, S. J., Vadalia, A. and Gutchess, A. H. (2013). Cross-cultural differences in memory specificity. Culture and Brain 1: 138–157, DOI: 

  146. Montefinese, M., Ambrosini, E., Fairfield, B. and Mammarella, N. (2013). The ‘subjective’ pupil old/new effect: Is the truth plain to see?. International Journal of Psychophysiology 89: 48–56, DOI: 

  147. Moray, N. (1959). Attention in dichotic listening: Affective cues and the influence of instructions. Quarterly Journal of Experimental Psychology 11: 56–60, DOI: 

  148. Most, S. B., Smith, S. D., Cooter, A. B., Levy, B. N. and Zald, D. H. (2007). The naked truth: Positive, arousing distractors impair rapid target perception. Cognition & Emotion 21: 964–981, DOI: 

  149. Murayama, K. and Kitagami, S. (2014). Consolidation power of extrinsic rewards: Reward cues enhance long-term memory for irrelevant past events. Journal of Experimental Psychology: General 143: 15–20, DOI: 

  150. Murty, V. P. and Dickerson, K. C. (2017). Motivational influences on memory In: Advances in Motivation and Achievement. Emerald Group Publishing Limited, pp. 203–227.  

  151. Murty, V. P., LaBar, K. S. and Adcock, R. A. (2012). Threat of punishment motivates memory encoding via amygdala, not midbrain, interactions with the medial temporal lobe. Journal of Neuroscience 32: 8969–8976, DOI: 

  152. Murty, V. P., LaBar, K. S., Hamilton, D. A. and Adcock, R. A. (2011). Is all motivation good for learning? dissociable influences of approach and avoidance motivation in declarative memory. Learning & Memory 18: 712–717, DOI: 

  153. Nairne, J. S. and Pandeirada, J. N. S. (2008). Adaptive memory: Is survival processing special?. Journal of Memory and Language 59: 377–385, DOI: 

  154. Nairne, J. S., Pandeirada, J. N. S. and Thompson, S. R. (2008). Adaptive memory: The comparative value of survival processing. Psychological Science 19: 176–180, DOI: 

  155. Nairne, J. S., Thompson, S. R. and Pandeirada, J. N. S. (2007). Adaptive memory: Survival processing enhances retention. Journal of Experimental Psychology: Learning, Memory, and Cognition 33: 263–273, DOI: 

  156. Northoff, G. and Hayes, D. J. (2011). Is our self nothing but reward?. Biological Psychiatry 69: 1019–1025, DOI: 

  157. Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H. and Panksepp, J. (2006). Self-referential processing in our brain: A meta-analysis of imaging studies on the self. NeuroImage 31: 440–457, DOI: 

  158. Oakes, M. A. and Onyper, S. V. (2017). The movement-induced self-reference effect: enhancing memorability through movement toward the self. Cognitive Processing, DOI: 

  159. Otto, A. R., Fleming, S. M. and Glimcher, P. W. (2016). Unexpected but incidental positive outcomes predict real-world gambling. Psychological Science 27: 299–311, DOI: 

  160. Pachur, T., Mata, R. and Hertwig, R. (2017). Who dares, who errs? disentangling cognitive and motivational roots of age differences in decisions under risk. Psychological Science 28: 504–518, DOI: 

  161. Padulo, C., Carlucci, L., Manippa, V., Marzoli, D., Saggino, A., Tommasi, L., Puglisi-Allegra, S. and Brancucci, A. (2017). Valence, familiarity and arousal of different foods in relation to age, sex and weight. Food Quality and Preference 57: 104–113, DOI: 

  162. Panksepp, J., Lane, R. D., Solms, M. and Smith, R. (2017). Reconciling cognitive and affective neuroscience perspectives on the brain basis of emotional experience. Neuroscience & Biobehavioral Reviews 76: 187–215, DOI: 

  163. Pessiglione, M., Schmidt, L., Draganski, B., Kalisch, R., Lau, H., Dolan, R. J. and Frith, C. D. (2007). How the brain translates money into force: A neuroimaging study of subliminal motivation. Science 316: 904–906, DOI: 

  164. Pessoa, L. (2009). How do emotion and motivation direct executive control?. Trends in Cognitive Sciences 13: 160–166, DOI: 

  165. Phelps, E. A. and LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron 48: 175–187, DOI: 

  166. Pickel, K. L. (1998). Unusualness and threat as possible causes of “weapon focus”. Memory 6: 277–295, DOI: 

  167. Polanía, R., Moisa, M., Opitz, A., Grueschow, M. and Ruff, C. C. (2015). The precision of value-based choices depends causally on fronto-parietal phase coupling. Nature Communications 6: 8090.DOI: 

  168. Pulvermüller, F. (2005). Opinion: Brain mechanisms linking language and action. Nature Reviews Neuroscience 6: 576–582, DOI: 

  169. Qiao-Tasserit, E., Garcia Quesada, M., Antico, L., Bavelier, D., Vuilleumier, P. and Pichon, S. (2017). Transient emotional events and individual affective traits affect emotion recognition in a perceptual decision-making task. PLOS ONE 12: e0171375.DOI: 

  170. Radel, R. and Clément-Guillotin, C. (2012). Evidence of motivational influences in early visual perception. Psychological Science 23: 232–234, DOI: 

  171. Raymond, J. E. and O’Brien, J. L. (2009). Selective visual attention and motivation. Psychological Science 20: 981–988, DOI: 

  172. Read, D. and Loewenstein, G. (1999). Enduring pain for money: decisions based on the perception and memory of pain. Journal of Behavioral Decision Making 12: 1–17, DOI:¡1::aid-bdm310¿;2-v 

  173. Redondo, R. L., Kim, J., Arons, A. L., Ramirez, S., Liu, X. and Tonegawa, S. (2014). Bidirectional switch of the valence associated with a hippocampal contextual memory engram. Nature 513: 426–430, DOI: 

  174. Rogers, T. B., Kuiper, N. A. and Kirker, W. S. (1977). Self-reference and the encoding of personal information. Journal of Personality and Social Psychology 35: 677–688, DOI: 

  175. Roper, Z. J. J. and Vecera, S. P. (2016). Funny money: the attentional role of monetary feedback detached from expected value. Attention, Perception, & Psychophysics 78: 2199–2212, DOI: 

  176. Rosati, A. G. and Hare, B. (2016). Reward currency modulates human risk preferences. Evolution and Human Behavior 37: 159–168, DOI: 

  177. Samanez Larkin, G. R., Gibbs, S. E. B., Khanna, K., Nielsen, L., Carstensen, L. L. and Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience 10: 787–791, DOI: 

  178. Schmidt, L. J., Belopolsky, A. V. and Theeuwes, J. (2015). Attentional capture by signals of threat. Cognition and Emotion 29: 687–694, DOI: 

  179. Schultz, W. (2015). Neuronal reward and decision signals: From theories to data. Physiological Reviews 95: 853–951, DOI: 

  180. Sescousse, G., Barbalat, G., Domenech, P. and Dreher, J.-C. (2013a). Imbalance in the sensitivity to different types of rewards in pathological gambling. Brain 136: 2527–2538, DOI: 

  181. Sescousse, G., Caldú, X., Segura, B. and Dreher, J.-C. (2013b). Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience & Biobehavioral Reviews 37: 681–696, DOI: 

  182. Sescousse, G., Redoute, J. and Dreher, J.-C. (2010). The architecture of reward value coding in the human orbitofrontal cortex. Journal of Neuroscience 30: 13095–13104, DOI: 

  183. Shafer, A. T., Matveychuk, D., Penney, T., O’Hare, A. J., Stokes, J. and Dolcos, F. (2012). Processing of emotional distraction is both automatic and modulated by attention: Evidence from an event-related fMRI investigation. Journal of Cognitive Neuroscience 24: 1233–1252, DOI: 

  184. Shebani, Z. and Pulvermüller, F. (2013). Moving the hands and feet specifically impairs working memory for arm- and leg-related action words. Cortex 49: 222–231, DOI: 

  185. Shigemune, Y., Abe, N., Suzuki, M., Ueno, A., Mori, E., Tashiro, M., Itoh, M. and Fujii, T. (2010). Effects of emotion and reward motivation on neural correlates of episodic memory encoding: A PET study. Neuroscience Research 67: 72–79, DOI: 

  186. Shohamy, D. and Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences 14: 464–472, DOI: 

  187. Skiba, R. M. and Snow, J. C. (2016). Attentional capture for tool images is driven by the head end of the tool, not the handle. Attention, Perception, & Psychophysics 78: 2500–2514, DOI: 

  188. Skrynka, J. and Vincent, B. (2017). Subjective hunger, not blood glucose, influences domain general time preference. PsyArXiv, : qgp54.DOI: 

  189. Snow, J. C., Pettypiece, C. E., McAdam, T. D., McLean, A. D., Stroman, P. W., Goodale, M. A. and Culham, J. C. (2011). Bringing the real world into the fMRI scanner: Repetition effects for pictures versus real objects. Scientific Reports 1DOI: 

  190. Snow, J. C., Skiba, R. M., Coleman, T. L. and Berryhill, M. E. (2014). Real-world objects are more memorable than photographs of objects. Frontiers in Human Neuroscience 8: 837.DOI: 

  191. Soderstrom, N. C. and McCabe, D. P. (2011). Are survival processing memory advantages based on ancestral priorities?. Psychonomic Bulletin & Review 18: 564–569, DOI: 

  192. Spaniol, J., Schain, C. and Bowen, H. J. (2013). Reward-enhanced memory in younger and older adults. Journals of Gerontology Series B: Psychological Sciences and Social Sciences 69: 730–740, DOI: 

  193. Squires, S. D., Macdonald, S. N., Culham, J. C. and Snow, J. C. (2016). Priming tool actions: Are real objects more effective primes than pictures?. Experimental Brain Research 234: 963–976, DOI: 

  194. Steblay, N. M. (1992). A meta-analytic review of the weapon focus effect. Law and Human Behavior 16: 413–424, DOI: 

  195. Strange, B. A., Hurlemann, R. and Dolan, R. J. (2003). An emotion-induced retrograde amnesia in humans is amygdala- and β- adrenergic-dependent. Proceedings of the National Academy of Sciences 100: 13626–13631, DOI: 

  196. Symons, C. S. and Johnson, B. T. (1997). The self-reference effect in memory: A meta-analysis. Psychological Bulletin 121: 371–394, DOI: 

  197. Tacikowski, P. and Nowicka, A. (2010). Allocation of attention to self-name and self-face: An ERP study. Biological Psychology 84: 318–324, DOI: 

  198. Talmi, D. (2013). Enhanced emotional memory. Current Directions in Psychological Science 22: 430–436, DOI: 

  199. Talmi, D., Dayan, P., Kiebel, S. J., Frith, C. D. and Dolan, R. J. (2009). How humans integrate the prospects of pain and reward during choice. Journal of Neuroscience 29: 14617–14626, DOI: 

  200. Talmi, D. and Moscovitch, M. (2004). Can semantic relatedness explain the enhancement of memory for emotional words?. Memory & Cognition 32: 742–751, DOI: 

  201. Talmi, D., Ziegler, M., Hawksworth, J., Lalani, S., Herman, C. P. and Moscovitch, M. (2013). Emotional stimuli exert parallel effects on attention and memory. Cognition & Emotion 27: 530–538, DOI: 

  202. Taylor, S. E. (1991). Asymmetrical effects of positive and negative events: The mobilization-minimization hypothesis. Psychological Bulletin 110: 67–85, DOI: 

  203. Tiedemann, L. J., Schmid, S. M., Hettel, J., Giesen, K., Francke, P., Büchel, C. and Brassen, S. (2017). Central insulin modulates food valuation via mesolimbic pathways. Nature Communications 8: 16052.DOI: 

  204. Tousignant, C. and Pexman, P. M. (2012). Flexible recruitment of semantic richness: context modulates body-object interaction effects in lexical-semantic processing. Frontiers in Human Neuroscience 6: 53.DOI: 

  205. Truong, G., Chapman, C. S., Chisholm, J. D., Enns, J. T. and Handy, T. C. (2016). Mine in motion: How physical actions impact the psychological sense of object ownership. Journal of Experimental Psychology: Human Perception and Performance 42: 375–385, DOI: 

  206. Truong, G., Roberts, K. H. and Todd, R. M. (2017). I saw mine first: A prior-entry effect for newly acquired ownership. Journal of Experimental Psychology: Human Perception and Performance 43: 192–205, DOI: 

  207. Tsetsos, K., Chater, N. and Usher, M. (2012). Salience driven value integration explains decision biases and preference reversal. Proceedings of the National Academy of Sciences 109: 9659–9664, DOI: 

  208. Tsukiura, T. and Cabeza, R. (2008). Orbitofrontal and hippocampal contributions to memory for face–name associations: The rewarding power of a smile. Neuropsychologia 46: 2310–2319, DOI: 

  209. Tucker, M. and Ellis, R. (1998). On the relations between seen objects and components of potential actions. Journal of Experimental Psychology: Human Perception and Performance 24: 830–846, DOI: 

  210. Vlaev, I., Seymour, B., Chater, N., Winston, J. S., Yoshida, W., Wright, N., Symmonds, M. and Dolan, R. (2014). Prices need no preferences: Social trends determine decisions in experimental markets for pain relief. Health Psychology 33: 66–76, DOI: 

  211. Vlaev, I., Seymour, B., Dolan, R. J. and Chater, N. (2009). The price of pain and the value of suffering. Psychological Science 20: 309–317, DOI: 

  212. Vrijsen, J. N., van Oostrom, I., Speckens, A., Becker, E. S. and Rinck, M. (2013). Approach and avoidance of emotional faces in happy and sad mood. Cognitive Therapy and Research 37: 1–6, DOI: 

  213. Vuilleumier, P. and Schwartz, S. (2001). Emotional facial expressions capture attention. Neurology 56: 153–158, DOI: 

  214. Wadlinger, H. A. and Isaacowitz, D. M. (2006). Positive mood broadens visual attention to positive stimuli. Motivation and Emotion 30: 87–99, DOI: 

  215. Wagner, D. D., Boswell, R. G., Kelley, W. M. and Heatherton, T. F. (2012). Inducing negative affect increases the reward value of appetizing foods in dieters. Journal of Cognitive Neuroscience 24: 1625–1633, DOI: 

  216. Wang, L., Yu, H. and Zhou, X. (2013). Interaction between value and perceptual salience in value-driven attentional capture. Journal of Vision 13: 5–5, DOI: 

  217. Weiner, B. and Walker, E. L. (1966). Motivational factors in short-term retention. Journal of Experimental Psychology 71: 190–193, DOI: 

  218. Weinstein, Y., Bugg, J. M. and Roediger, H. L. (2008). Can the survival recall advantage be explained by basic memory processes?. Memory & Cognition 36: 913–919, DOI: 

  219. Wentura, D., Rothermund, K. and Bak, P. (2000). Automatic vigilance: The attention-grabbing power of approach- and avoidance-related social information. Journal of Personality and Social Psychology 78: 1024–1037, DOI: 

  220. Williams, L. A. and DeSteno, D. (2008). Pride and perseverance: The motivational role of pride. Journal of Personality and Social Psychology 94: 1007–1017, DOI: 

  221. Wilson, A. D. and Golonka, S. (2013). Embodied cognition is not what you think it is. Frontiers in Psychology 4: 58.DOI: 

  222. Wispinski, N. J., Truong, G., Handy, T. C. and Chapman, C. S. (2017). Reaching reveals that best-versus-rest processing contributes to biased decision making. Acta Psychologica 176: 32–38, DOI: 

  223. Witt, J. K., Kemmerer, D., Linkenauger, S. A. and Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychological Science 21: 1215–1219, DOI: 

  224. Wolpert, D. M., Ghahramani, Z. and Flanagan, J. (2001). Perspectives and problems in motor learning. Trends in Cognitive Sciences 5: 487–494, DOI: 

  225. Wood, N. and Cowan, N. (1995). The cocktail party phenomenon revisited: How frequent are attention shifts to one’s name in an irrelevant auditory channel?. Journal of Experimental Psychology: Learning, Memory, and Cognition 21: 255–260, DOI: 

  226. Woud, M. L., Becker, E. S., Lange, W.-G. and Rinck, M. (2013). Effects of approach-avoidance training on implicit and explicit evaluations of neutral, angry, and smiling face stimuli. Psychological Reports 113: 199–216, DOI: 

  227. Xie, W. and Zhang, W. (2016). Negative emotion boosts quality of visual working memory representation. Emotion 16: 760–774, DOI: 

  228. Xie, W. and Zhang, W. (2017). Negative emotion enhances mnemonic precision and subjective feelings of remembering in visual long-term memory. Cognition 166: 73–83, DOI: 

  229. Yamawaki, R., Nakamura, K., Aso, T., Shigemune, Y., Fukuyama, H. and Tsukiura, T. (). Remembering my friends: Medial prefrontal and hippocampal contributions to the self-reference effect on face memories in a social context. Human Brain Mapping, DOI: (in press). 

  230. Yee, D. M., Krug, M. K., Allen, A. Z. and Braver, T. S. (2016). Humans integrate monetary and liquid incentives to motivate cognitive task performance. Frontiers in Psychology 6: 2037.DOI: 

  231. Yoon, S., Vo, K. and Venkatraman, V. (2017). Variability in decision strategies across description-based and experience-based decision making. Journal of Behavioral Decision Making, DOI: 

  232. Zeigenfuse, M. D., Pleskac, T. J. and Liu, T. (2014). Rapid decisions from experience. Cognition 131: 181–194, DOI: 

  233. Zhou, X. and Gao, D.-G. (2008). Social support and money as pain management mechanisms. Psychological Inquiry 19: 127–144, DOI: 

  234. Zimmerman, C. A. and Kelley, C. M. (2010). ‘I’ll remember this!’ effects of emotionality on memory predictions versus memory performance. Journal of Memory and Language 62: 240–253, DOI: 

  235. Zink, C. F., Tong, Y., Chen, Q., Bassett, D. S., Stein, J. L. and Meyer-Lindenberg, A. (2008). Know your place: Neural processing of social hierarchy in humans. Neuron 58: 273–283, DOI: 

Peer Review Comments

The author(s) of this paper chose the Open Review option, and the peer review comments are available at: