
Krueger, J. I. and Heck, P. R. (2018). Testing Significance Testing. Collabra: Psychology, 4(1): 11. 
pp. 1–13, DOI: https://doi.org/10.1525/collabra.108

ORIGINAL RESEARCH REPORT

Testing Significance Testing
Joachim I. Krueger* and Patrick R. Heck†

The practice of Significance Testing (ST) remains widespread in psychological science despite continual 
criticism of its flaws and abuses. Using simulation experiments, we address four concerns about ST and 
for two of these we compare ST’s performance with prominent alternatives. We find the following: First, 
the p values delivered by ST predict the posterior probability of the tested hypothesis well under many 
research conditions. Second, low p values support inductive inferences because they are most likely to 
occur when the tested hypothesis is false. Third, p values track likelihood ratios without raising the 
uncertainties of relative inference. Fourth, p values predict the replicability of research findings better 
than confidence intervals do. Given these results, we conclude that p values may be used judiciously as a 
heuristic tool for inductive inference. Yet, p values cannot bear the full burden of inference. We encourage 
researchers to be flexible in their selection and use of statistical methods.
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The Zeitgeist in psychological science is rife with self-doubt 
and criticism (Lilienfeld & Waldman, 2017). Theories are 
said to be shallow and narrow (Fiedler, 2017; Gigerenzer, 
1998; Gigerenzer & Marewski, 2015), research practices to 
lack professional and ethical rigor (Simmons, Nelson, &  
Simonsohn, 2011), and statistical methods to be low in 
power and validity (Button et al., 2013). Significance 
Testing (ST), and particularly its null hypothesis variant 
(NHST), is a prominent target of criticism, in part because 
of the many documented misconceptions regarding its 
limitations and its proper use. Although ST continues 
to be widely used in research practice (Krueger, 2001;  
Nickerson, 2000), its popularity says little about its validity.  
A method may be popular simply because of tradition and 
habit, or because of false beliefs regarding its validity. In 
recent years, the use of alternative methods, which are 
sometimes used in combination with ST, has increased. 
From the researcher’s point of view, an eclectic approach 
is reasonable and pragmatic, given the unsettled nature 
of the critical debate. Indeed, many prominent commen-
tators have endorsed eclecticism (Abelson, 1995; Cohen, 
1990; Dawes, 1991; Senn, 2001, 2017; Wilkinson & the 
APA Task Force on Statistical Inference, 1999). 

Recently, the American Statistical Association (ASA) 
weighed in with a “statement on statistical significance 

and P-values.” Noting that “the p-value can be a useful 
statistical measure” (Wasserstein & Lazar, 2016, p. 131), 
the authors of the statement cautioned that p is of lim-
ited value on its own. They also express a strong concern 
about misuses and misinterpretations of p values, as did 
the authors of similar statements in the past. For the pur-
poses of the present article, we consider misconceptions 
about the properties of ST as the purview of education 
and ethics (Lilienfeld, Sauvigné, Lynn, Cautin, Latzman, &  
Waldman, 2015). Here, we are primarily concerned 
with the method’s conceptual and technical properties 
(Greenland, 2017; Greenland et al., 2016; Perezgonzalez, 
2015). A focus on these properties is timely because 
some authors have concluded that the inferential 
value of ST is so slim that other methods should take 
its place (Eich, 2014; McShane, Gal, Gelman, Robert, 
Tackett, 2017; Trafimow & Marks, 2015). But which of 
these alternatives shall be favored? Confidence inter-
vals, parameter estimation, descriptive analysis, and 
various Bayesian methods are available, and each 
method has its own strengths and weaknesses. Here, we 
hope to contribute to this conversation by assessing the 
performance of the p value and by comparing it, where 
possible, with specific alternatives.

The controversy over best statistical practices emerged, 
in part, from historical accident. The long-standing promi-
nence of ST made it a salient object of critical discussion. 
Individual alternative methods are sometimes seen as 
gaining in credibility inasmuch as a particular shortcom-
ing of ST is demonstrated. Direct comparisons between ST 
and alternatives are rare, as are comparisons between or 
among those alternatives. 
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Our approach is to pose four questions regarding induc-
tive inference, and then to assess ST’s performance – where 
possible in direct comparison with an alternative. We first 
address each question at the conceptual level and then 
seek quantitative answers in simulation experiments. The 
four questions are: [1] How well does the p value predict 
the posterior probability of the tested hypothesis? [2] Is 
there a relationship between the variability of the p value 
over studies and its inductive value? [3] How well does 
the p value perform compared with the likelihood ratio or 
Bayes factor? [4] How well does the p value perform com-
pared with confidence intervals in predicting the replica-
bility of empirical results? In answering these questions 
we do not attempt to insulate the p value from critique, 
but rather attempt to evaluate its performance under bal-
anced assumptions and conditions.

1. Does the p value predict the probability of a 
hypothesis given the evidence?
The p value refers to the probability of the data at least as 
extreme as the observed data given the statistical (often 
the null) hypothesis, p(D|H), and assuming that underly-
ing assumptions are met (Greenland et al., 2016; Wasser-
stein & Lazar, 2016). In ST, the test statistic (e.g., z, t, or 
F) represents the data as it is computed from the central 
tendency of the observed data and the standard error. 
We use the terms p value and p(D|H) interchangeably. 
As a probability that refers to the size of an area under 
a density curve, the p value is conceptually distinct from 
the likelihood of the data, which refers the value of the 
density function at a particular point. In our simulation 
experiments, we find that the log-transforms of p values 
are nearly perfectly correlated with their associated likeli-
hoods. Consider a continuous distribution under the null 
hypothesis of m = 0. As sample observations increase in 
magnitude (for example, from a range of .01 to 2.0 stand-
ard units) when moving from the peak of this distribution 
toward the positive (right) tail, p values and likelihoods 
both decrease monotonically. In this article, we only 
report the findings obtained with likelihoods.

A key concern about the p value is that it does not speak 
to the strength of the evidence against the tested hypoth-
esis, that is, that it does not predict the posterior prob-
ability of the tested hypothesis (Cohen, 1994; Gelman, 
2013; Lykken, 1968). The ASA warns that that “p-values 
do not measure the probability that the studied hypoth-
esis is true” (Wasserstein & Lazar, 2016, p. 131), although 
“researchers often wish to turn a p-value into a state-
ment about the truth of a null hypothesis” (p. 131). In 
other words, finding that the data are unlikely under the 
hypothesis is not the same as finding that the hypothesis 
is unlikely under the data. The question of whether there 
is any relationship, and how strong it might be, is the crux 
of inductive inference. All inductive inference is essen-
tially “reverse inference,” and reverse inference demands 
vigilance (Krueger, 2017). 

We sought to quantify how much p(D|H) reveals about 
p(H|D). Bayes’ Theorem, which expresses the mathemati-
cal relationship between the two inverse conditional 
probabilities, provides the first clues. The theorem 

( ) ( | )( | )
( ) ( | ) ( ) ( | )
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shows that as p(D|H) decreases, ceteris paribus, so does 
p(H|D). If the tested hypothesis, H, is a null hypothesis, 
a low p value suggests a comparatively high probability 
that the alternative hypothesis, ~H, is true. Yet, the asso-
ciation between p(D|H) and p(H|D) is perfect only if the 
prior probability of the hypothesis, p(H), is the same as 
the cumulative probability of the data, p(D), that is, the 
denominator of the ratio in the above formula. This iden-
tity may be rare in research practice; so how strongly is 
p(D|H) related to p(H|D) in practice? 

We studied the results for a variety of settings in simu-
lation experiments (Krueger & Heck, 2017). We began by 
sampling the elements of Bayes’ Theorem, p(H), p(D|H), 
and p(D|~H) from uniform distributions that were inde-
pendent of one another. These simple settings produced 
a correlation of r = .38 between p(D|H) and p(H|D) (see 
also Krueger, 2001; Trafimow & Rice, 2009). The size of 
this correlation may raise questions about the inductive 
power of the p value. Note, however, that this correlation 
emerges for a set of minimal, and as we shall see unreal-
istic, assumptions and thus represents a lower bound of 
possible results. Consider the relationship between p(D|H) 
and p(D|~H) over studies. Inasmuch as the null hypothesis 
H and the alternative hypothesis ~H are distinctive, one 
may expect a negative correlation between p(D|H) and 
p(D|~H) over studies. The limiting case is given by a daring 

~H predicting a large effect, d, and a set of experiments 
yielding estimated effects d that are greater than 0 but 
smaller than d (García-Pérez, 2016). Here, the correlation 
between p(D|H) and p(D|~H) is perfectly negative. 

We sampled values for p(H), p(D|H), and p(D|~H) and 
varied the size of the negative correlation between p(D|H) 
and p(D|~H), with the result of interest being the correla-
tion between p(D|H) and p(H|D), that is, the correlation 
indicating the predictive power of p for the posterior 
probability of the null hypothesis. We found that as the 
correlation between p(D|H) and p(D|~H) becomes more 
negative, the correlation between p(D|H) and p(H|D) 
becomes more positive. For example, when setting the 
correlation between p(D|H) and p(D|~H) to r = −.9, the 
outcome correlation between p(D|H) p(H|D) is r = .49, 
which is moderately greater than the baseline correlation 
of .38 obtained under the assumption of independence. 
Nevertheless, when a research program provides bold 
hypotheses, that is, hypotheses that overestimate empiri-
cal effect sizes, the p value becomes an incrementally 
stronger predictor of the posterior probability of H (and 
thereby of ~H). 

Turning to the effect of researchers’ prior knowledge 
on the inductive power of p, we varied the correlation 
between p(D|H) and the prior probability of a hypothesis 
p(H). Here, positive correlations reflect the researchers’ 
sense of the riskiness of the tested hypothesis. At one 
end of the spectrum, consider an experiment in parapsy-
chology, where the prior probability of the null hypoth-
esis (e.g., “Psychokinesis cannot occur”) is high – at least 
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among skeptics. A low p value is improbable, that is, the 
(meta-)probability of a low p value is low. Thus, both p(~H) 
and p(p < .05) are low.1 At the other end of the spectrum, 
consider a social categorization experiment, for exam-
ple, on ingroup-favoritism. Ingroup-favoritism is a robust 
empirical finding (Brewer, 2007), and thus the prior prob-
ability of the null hypothesis of no favoritism is low. Now, 
both p(~H) and p(p < .05) are high. When multiple sce-
narios across this spectrum are considered, the positive 
correlation between p(H) and p(D|H) is evident. 

When raising the correlation between p(H) and p(D|H) 
to .5 and to .9, we respectively observe correlations of .628 
and .891 between p(D|H) and p(H|D). This result suggests 
that as a research program matures, the p value becomes 
more closely related to both the prior probability of the 
tested hypothesis and its updated posterior probability. 
Interestingly, ST yields diminishing returns within a line of 
study, as reflected in shrinking differences between p(H) 
and p(H|D). To review, the distribution of the prior proba-
bility of the likelihood of a hypothesis tends to be flat and 
uncoupled from the obtained p value in the early stages of 
a research program. At this stage, p values predict p(H|D) 
rather poorly. As theory and experience mature, however, 
the probabilities assigned to hypotheses begin to fall into 
a bimodal distribution; the researcher’s experience allows 
more informed guesses as to which hypotheses are true 
and which are false. When a null hypothesis is tested that 
has already been rejected several times, its probability 
prior to the next study is low and so is the expected p 
value. 

Consider research on the self-enhancement bias as 
another example for the use of ST in a mature research 
domain. After years of confirmatory findings, the 
researcher can predict that most respondents will regard 
themselves as above average when rating themselves and 
the average person on dimensions of personal importance 
(Krueger, Heck, & Asendorpf, 2017). The prior probability 
of the null hypothesis of no self-enhancement is low and 
the meta-probability of a low p value is high. When p val-
ues are closely linked to the priors, their surprise value 
is low; they do not afford much belief updating. In light 
of this consideration, a desire for a strong correlation 
between p(D|H) and p(H|D) must be balanced against the 
desire to maximize learning from the data, that is, the dif-
ference between p(H) and p(H|D). A certain hypothesis 
requires no additional data to increase this certainty. ST 
is most valuable when the researcher’s theory and expe-
rience call for tests of novel and somewhat risky hypoth-
eses. If the hypothesis is neither novel nor risky, little can 
be learned; if, in contrast, the hypothesis is too risky, the 
effort of testing it is likely wasted. 

2. Is the variability of the p value related to 
its inductive value?
A second concern about p values is their variability (Cum-
ming, 2008; Gelman & Stern, 2006; Halsey, Curran-Everett,  
Vowler, & Drummond, 2015). Cumming (2014, p. 13) 
observes “that p can take almost any value! The dance of 
the p values is astonishingly wide!” The implied reverse 
inference is that variable statistics are of limited value 

because statistics of limited value tend to be variable. 
How valid is this reverse inference? On the one hand, it 
is well known that the density distribution of the p value 
is uniform when the null hypothesis is true (Murdoch, 
Tsai, & Adcock, 2008). Any particular value for p, from 0 
to 1, has the same chance of appearing when there is no 
effect. On the other hand, it is clear that p values are less 
variable when the alternative hypothesis is true, and their 
variability shrinks further as true effects and samples get 
larger (see the tool available at http://rpsychologist.com/
d3/pdist/ to visualize this property, Magnusson, 2015). 
When the null hypothesis is false (i.e., p(H) = 0), the den-
sity function of p is right-skewed such that its smallest val-
ues are the most likely (Cumming, 2008; Murdoch et al., 
2008). Now, the probability of finding a particular p value 
or smaller is greater than that particular p value. This sec-
ond-order probability is the probability of a p value, or, pp 
(Simonsohn, Nelson, & Simmons, 2014). The critical regu-
larity is the negative correlation between p and pp if the 
null hypothesis is false. A small p value has a high probabil-
ity of being observed. If the null hypothesis is true, how-
ever, the probability of obtaining p < .05 is exactly .05. 
As the null hypothesis becomes less likely to be true, the 
probability of obtaining p < .05 becomes greater than .05.

Consider – like Jonathan Swift – two islands, one 
in which the Lilliputians are much shorter than the 
Blesfucians, and another in which there is no difference. 
Sampling heights from the no-effect island produces a 
uniform distribution of p values; by chance alone, p val-
ues of .05 or less will be drawn 5% of the time. Sampling 
from the population with a large effect positively skews 
the distribution of p values. When most Blesfucians are 
taller than most Lilliputians, detecting the difference 
is easy: randomly sampling from each group is likely to 
show a difference in average height and a correspond-
ingly low p value. This case illustrates the logic of pp, 
where there is a high probability (the former p in the 
term) of obtaining a low p value (the latter p). Here, fail-
ing to detect a difference is unlikely and would be the 
surprising outcome. 

We ask whether the relationship between p and pp can 
shed light on the p value’s inductive value. We use the 
term ‘value’ in the sense of ‘utility’ or ‘worth.’ How ‘valu-
able’ is any given p value in making an inductive infer-
ence? The value of an outcome is a multiplicative function 
of its unconditional value (or ‘worth’ to the user) and its 
probability of being obtained (Bernoulli, 1954/1738). We 
add the psychological assumption that researchers using 
ST ‘prefer’ low p values to large ones (cf. Benjamin, Berger 
et al., 2017). Consider a set of studies, some of which are 
‘safe’ and others are ‘risky.’ In safe studies, substantive 
effects are confidently predicted on the basis of theory 
and prior research; in risky studies, researchers rather 
throw darts in the dark, hoping to capture a novel phe-
nomenon. The safe studies are more likely to yield low p 
values than the risky studies. In other words, when mov-
ing from risky to safe research, there is an increasingly 
negative correlation between p values and their probabil-
ity of occurring (pp). Low p values become more probable 
(i.e., low p with high pp) as a research program becomes 

http://rpsychologist.com/d3/pdist/
http://rpsychologist.com/d3/pdist/


Krueger and Heck: Testing SignificanceArt. 11, page 4 of 13  

safer (i.e., more predictable). This regularity reflects a gen-
eral phenomenon found in nature and in the world of 
human artifacts and services; value increases with scarcity 
(Pleskac & Hertwig, 2014).2 In the context of ST, finding a 
low p value in risky research (low p(~H)) is the most prized 
result, precisely because it is hard to get. 

We now quantify the concept of inductive value of the 
statistical p value by taking the complement of the ratio 
of p over its probability of being observed, pp. This index 
of 1–p/pp is 0 if p = pp, that is, if null hypothesis is true. If 
there is no effect, then the p value has no inductive value. 
If, as skeptics of the paranormal, we tested for the pres-
ence of psychokinesis in multiple studies, for example, we 
would expect a priori to find p ≤ .05 in 5% of these studies. 
In contrast, when p is lower than its second-order prob-
ability of occurring (i.e., if p < pp), there is added induc-
tive value. For this to be true, the prior probability of the 
null hypothesis must be less than 1, that is, there must be 
point in doing the experiment. Suppose two experiments 
yield p = .01, but pp = .02 in one experiment (the distribu-
tion of p is positively skewed) and .03 in the other (more 
positive skew). The latter case suggests the presence of a 
larger effect. Therefore, the inductive value of p is greater 
in the second experiment (.667) than in the first (.5). The 
higher number suggests a stronger case against the null 
hypothesis because a low p value is obtained in a condi-
tion where it is more likely to be observed, that is, in a 
condition in which the null is false. 

Recall that p values tend to decrease as true effects 
become larger, as null hypotheses become less probable, 
and as samples become larger. Our prediction is that p 
values decrease faster than their probability of occurring 
(i.e., pp). If so, a decrease in p increases its inductive value 
(or ‘worth’ to the researcher). Our prediction amounts to 
reverse inference from a low p value to an inductively valu-
able finding. For each setting in a series of simulations, we 
drew 10,000 samples each from a normal null distribution 
(μ = 50, σ = 10) and an alternative distribution (μ = 50 + 
δ and σ = 10), and conducted one-sample t-tests compar-
ing the observed means with the theoretical one. We mod-
eled three different research environments by varying the 
number of samples drawn from each distribution. In the 
sure-thing environment, all samples were drawn from the 
alternative distribution (i.e., p(H) = 0). In the uncertain 
environment, half of samples were drawn from the null 
distribution (p(H) = .5). In the risky environment, 80%  
of the samples were drawn from the null distribution 

(p(H) = .8). In each environment, we studied the effect 
sizes of δ = .2, .5, .8 under three sampling conditions  
(N = 20, 50, 100). We obtained the p value for each test, 
and then estimated its corresponding pp by asking how 
many of the 10,000 samples resulted in that p value or 
below it. Finally, we estimated inductive value as 1–p/pp. 

Table 1 shows the results for the p value thresholds of 
.05, .01, .005, and .001, which were set up so that a cumu-
lative probability of p values equal or lower was possible. 
As predicted, inductive value increases with the probabil-
ity of the alternative hypothesis (~H) being true, the size 
of that effect (δ), and the sample size (N). This pattern is 
the inverse of the pattern characteristic of the simple p 
value. We thus observe the predicted negative correlation 
between p and (1–p/pp). When correlating the median p 
values obtained from the 27 simulation experiments with 
their corresponding inductive-value indices, the result is  
r = -.898. This correlation is negative because the proba-
bility of the non-null effect, p(~H), the size of that effect, δ, 
and the size of the sample, N, affect p more strongly than 
they affect its meta-probability, pp. When p(H) = 0, the p 
value has great expected value regardless of the size of the 
effect or the sample. In contrast, when research is risky, 
p(H) = .8, the expected value of p is variable; it depends 
on the size of the effect and the sample. For these risky 
environments in particular, researchers must take care 
to adequately power experiments based on precise effect 
size estimates. 

The index of inductive value is similar to other efforts 
to place p values in the context of their probability of 
occurring. Mayo (2016) noted that “looking at the p-value 
distribution under various discrepancies from H0: μ = μ0 
allows inferring those that are well or poorly indicated. If 
you very probably would have observed a more impres-
sive (smaller) p-value than you did, if μ > μ1 (where μ1 = 
μ0 + γ), then the data are good evidence that μ ≤ μ1” (see 
also Simonsohn et al., 2014). Our index integrates first- 
and second-order probability to reveal the p value’s induc-
tive value. Researchers may calculate their own inductive 
value index (1 – p/pp) with the caveat that, similar to the 
p-curve, they must have access to the unique underlying 
distribution of p values in their experimental environment 
(given p(H), d, and n). Table 1 provides estimates of this 
index under several discrete settings of the research envi-
ronment. Future work may explore the possibility of creat-
ing a simulation tool that takes in the necessary inputs to 
generate a robust distribution of p values and computes 

Sure-thing environment Uncertain environment Risky environment

δ = .2 .5 .8 δ = .2 .5 .8 δ = .2 .5 .8

N = 20 0.768 0.973 0.990 0.378 0.814 0.933 −0.019 0.122 0.336

N = 50 0.924 0.990 0.992 0.671 0.948 0.983 0.133 0.543 0.775

N = 100 0.971 0.992 0.993 0.831 0.980 0.991 0.356 0.811 0.924

Note. Table entries are the medians for (1 − (p/pp)) computed over p values of .05, .01, .005, and .001. ‘Sure-thing,’ ‘Uncertain,’ and 
‘Risky’ specify that, respectively, 100%, 50%, or 20% of samples were drawn from the alternative distribution.

Table 1: The “Inductive Value” of p.
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the inductive value index based on the p value obtained 
from an experiment. This metric, computed from only a 
single experiment, is a departure from p-curve analysis, 
which takes in a series of observed p values to measure 
their apparent fit with a theoretical distribution of p val-
ues (Simmons et al., 2015). The inductive value index is 
not meant to replace p as a metric of evidence and infer-
ence, or p-curve analysis as an inference tool capable of 
evaluating a series of results. Instead, this index and our 
demonstrations serve to corroborate the intuitive notion 
that a low p value from a single experiment sends a heu-
ristic signal suggesting the presence of a non-null effect.3 

3. Do likelihood ratios perform better than p 
values?
Two elements of Bayes’ Theorem combine to form the 
likelihod ratio, LR. The numerator of the formula pre-
sented earlier contains p(D|H) and thus the p value. The 
denominator contains the term p(D|~H), which is the like-
lihood of data under the alternative hypothesis. Another 
way of writing the theorem is to note that the ratio of the 
posterior probabilities (i.e., the posterior odds that the 
[null] hypothesis is true) is equal to the prior odds times 
the LR, i.e.,

( | ) ( ) ( | )
( | ) ( ) ( | )
p H D p H p D H

p H D p H p D H
 

  

When the alternative hypotheis refers to a specific point, 
the LR may also be referred to as the Bayes factor, BF (e.g., 
Lee & Wagenmakers, 2005; Ortega & Navarrete, 2017). 
Many authors recommend the LR (or the posterior odds) 
as alternatives to ST and its p value (Goodman & Royall, 
1988; Kruschke & Lidell, 2017; Lindley, 1975). Setting 
aside the complexity introduced by the selection of priors 
(van der Linden & Chryst, 2017), we ask how well the p 
value performs compared to the LR.  

The estimation of a LR requires a specific alternative 
hypothesis, ~H, in addition to the null hypothesis, H. 
Having to make this selection explicit is thought to elimi-
nate the illusion of scooping up a “free lunch” (Rouder  
et al., 2016). If the likelihood of the null hypothesis is the 
denominator, finding that LR > 1 favors the alternative. 
For there to be relative evidence against the null hypoth-
esis, the data must not be only unlikely under the null 
hypothesis, they must be less likely under the null hypoth-
esis than under the alternative. The emphasis on relative 
evidentiary value is a critical conceptual shift away from 
the routine of ST. The other shift is that the location of the 
alternative hypothesis may vary, thereby allowing multi-
ple LR to be computed. 

We now assume that a specific alternative hypothesis 
has been chosen, and that multiple experiments can be 
performed. From this perspective, we see the close corre-
spondence between the p value and the LR. Indeed, when 
both indices are log transformed, the correlation between 
the two is nearly perfect. As the p value drops, so does 
the numerator of the LR and the LR itself.4 This correla-
tion is, of course, not sufficient to equate the two; LR are 
often evaluated in absolute terms as exceeding or failing 

to meet some threshold of evidentiary value (Wetzels, 
Matzke, Lee, Rouder, Iverson, & Wagenmakers, 2011). Over 
studies, however, the relationship between p and the LR 
is an important one. We explore when and how LR covary 
with p.

One way to show that the LR can capture variation that 
is ignored by the p value is to hold p constant (i.e., by 
looking only at the data from one sample) and to vary the 
alternative hypothesis. As the effect δ predicted by ~H var-
ies, so does p(D|~H) and therefore the LR. Wagenmakers 
et al. (2017) described three hypothetical experiments, 
each producing t(48) = 2.11, p = .04, and considering a 
different ~H for each. The three predicted effect sizes are 
δ = .15, .60, and 2.0. The corresponding LR [here: p(D|~H)/
p(D|H)] are 2.56, 8.61, and 1/13,867. 

The point of this illustration is that the same p value can 
weaken or strengthen the null hypothesis depending on 
the location of the alternative hypothesis. A strong con-
clusion is that since Fisherian ST does not provide an alter-
native, the inductive value of p is indeterminate. While we 
agree with this conclusion, we hasten to note that the pre-
sent illustration generalizes to a single experiment whose 
data are evaluated in light of different alternative hypoth-
eses. Unless the selection of these hypotheses is made 
with the greatest theoretical rigor and restraint, a danger 
of hypothesis hacking lurks (Kerr, 1998). 

We now return to the question of how the p value is 
related to the LR. So far, we have considered two scenarios, 
both of which are incomplete. In the first scenario, both 
hypotheses were fixed while the data varied. Here, the LR 
was perfectly redundant to the p value. In the second sce-
nario, we followed Wagenmakers and colleagues to show 
that when the null hypothesis and the data are fixed while 
the alternative hypothesis varies, the relationship between 
p and the LR is undefined. A more comprehensive view 
involves variation in both p and the LR, where the latter is 
accomplished by variations of ~H or δ. 

We therefore conducted simulation experiments, in 
which we varied both p(D|H) and p(D|~H). We set the null 
distribution to μ = 10 and σ = 5, and chose a series of 
mean values for ~H (11, 12.5, 14, 15, 17.5, 20, 22.5, 30, and 
40) to represent alternatives with a spread of effect sizes (δ 
= .2, .5, .8, 1, 1.5, 2, 2.5, and 4). Next, we chose the three p 
values of .05, .01, and .001, which we respectively obtained 
with sample data that had means of 19.8, 22.9, and 26.5. 
Table 2 shows these settings along with the probabilities 
of the data under the alternative hypotheses, p(D|~H) as 
well as the LR. With these settings, we find that as the p 
value gets smaller, so does the average p(D|~H), r = .38. 
The crucial result is that the LR also decreases. It does so 
because the value of p(D|H) drops more sharply (from .05 
to .001) than does the value of p(D|~H) (from .381 to .152 
averaged over variation in δ). Across experiments, the cor-
relation between the p value and the LR is r = .46. The size 
of this correlation supports our view that the p value is a 
useful heuristic for induction; it is neither useless nor can 
it do all the required work.

We have considered some low values for p to see what 
happens within the range of results conventionally con-
sidered significant, and we used only specific alternative 
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Simulation Parameters δ M
~H Z

~H p(D|~H) LR

m = 19.8 0.2 11 1.76 0.079 0.689

H = 10 0.5 12.5 1.46 0.145 0.425

z = 1.96 0.8 14 1.16 0.246 0.287

p = .05 1 15 0.96 0.337 0.232

1.5 17.5 0.46 0.646 0.163

2 20 0.04 0.968 0.147

2.5 22.5 0.54 0.589 0.169

4 30 2.04 0.042 1.174

Average 17.81 1.05 0.381 0.159

m = 22.9 0.2 11 2.38 0.017 0.609

H = 10 0.5 12.5 2.08 0.038 0.312

z = 2.58 0.8 14 1.78 0.075 0.175

p = .01 1 15 1.58 0.114 0.125

1.5 17.5 1.08 0.280 0.064

2 20 0.58 0.562 0.042

2.5 22.5 0.08 0.936 0.036

4 30 1.42 0.156 0.098

Average 17.81 1.37 0.272 0.060

m = 26.5 0.2 11 3.10 0.002 0.527

H = 10 0.5 12.5 2.80 0.005 0.218

z = 3.30 0.8 14 2.50 0.013 0.098

p = .001 1 15 2.30 0.022 0.061

1.5 17.5 1.80 0.072 0.022

2 20 1.30 0.194 0.010

2.5 22.5 0.80 0.424 0.006

4 30 0.70 0.484 0.006

Average 17.81 1.91 0.152 0.020

Table 2: Likelihood Ratio to p Value Comparisons.

Note. m = observed mean, H = Null hypothesis mean, z = test statistic observed, p = p value resulting from test, δ = effect 
size for alternative hypothesis, LR = Likelihood ratio.

hypotheses. When researchers do not wish to commit to  
specific alternative hypotheses, they can aggregate over a 
distribution of alternatives to the null, and compute ‘diffuse’ 
or ‘default’ tests. The results of this approach often resemble  
ST. Wetzels et al. (2011) computed diffuse-alternative LR 
(they preferred the label BF) for a large set of published 
results, most of which significant by the lights of ST. 
Plotting LR against p, the authors found a strong relation-
ship (see Wetzels et al., Figure 2, where the LR and p are 
nearly perfectly correlated). Yet, they considered the LR 
to be superior, noting that the range of p from .05 to .01  
merely qualifies as “anecdotal evidence” by Bayesian 
standards (Jeffreys, 1961). We submit that this discrepancy 
reflects different conventions in labeling segments of a 
scale rather than substantive differences in evidentiary 
power (Krueger & Heck, 2017).

To conclude this section, we observe that the relation-
ship between the LR and the p value is a special case 
of the general relationship between a ratio and its own 
numerator. In a set of simulations, we randomly sampled 
values for variables X and Y drawn from a uniform dis-
tribution ranging from 0 to 1, and varied the correlation 
between X and Y. When using the raw values of X and 
X/Y, the correlation between the two hovers around zero 
because very small denominators can produce enormous 
ratios. These outliers skew the distributions to the point at 
which Pearson’s r becomes meaningless. This observation 
may explain – and guard against – the claim that the LR 
is independent of the p value. With log transformation (or 
Spearman’s Rho), however, high correlations emerge and 
they increase as rXY becomes more negative. For example, 
rX,X/Y = .34 and .83 respectively for rXY = .5 and –.5. Small 
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nonlinearities remain so that the best-fitting associations 
are even stronger. Figure 1 shows these correlations for a 
full range of rXY. The values for rX,X/Y remain positive even 
under the least favorable conditions (i.e., when X and Y are 
increasingly redundant). The reason why the correlations 
are less than perfect is simply the researcher’s ignorance 
of what the research hypothesis (~H) might be. It is nei-
ther a specific prediction nor a default-diffuse one.  

We have seen that the LR can improve inductive infer-
ences if a well-reasoned alternative hypothesis is available. 
A researcher who wishes to estimate the posterior prob-
ability of the null hypothesis, p(H|D), is better served by 
knowing p(D|H) and p(D|~H) than by knowing only the 
former. Yet, we also saw that the p value is a useful heuris-
tic for predicting LR and p(H|D). Researchers may consider 
using this heuristic when available theory is too imprecise 
to make point predictions.  

4. Are confidence intervals better predictors of 
replicability? 
One long-standing alternative to p values are confidence 
intervals, CI, which provide more information than do 
p values (Loftus, 1993; 1996). The lower bound of a CI 
reveals whether statistical significance would have been 
obtained had one computed p. The upper bound reveals 
at what magnitude effect sizes become unlikely given the 
current data. The main focus of the CI approach is the esti-
mation of the size of the latent effect rather than the ques-
tion of whether that effect exists.

The Open Science Collaboration (2015) reported that 
the replicability of empirical results is low when evaluated 

in terms of ST or in terms of CI. However, Cumming (2014) 
proposed that the CI approach can yield stronger results 
(see Lindsay, 2015, for an enthusiastic endorsement of this 
method). To illustrate his claim, Cumming simulated 25  
experiments each with a true effect of d = .50, and  
N = 32 for each of two independent samples. Eleven of 
these experiments yielded p < .05. In other words, this 
simulation is designed to model an environment where 
successful replication within ST is improbable. The 
statistical power, that is, the probability of rejecting the null  
hypothesis upon re-experimentation and assuming that 
the null hypothesis is false, is 1 – b = .53, a virtual coin 
flip. With higher power, all tests eventually become  
significant. Because many experiments in psychological 
science are underpowered, Cumming’s simulation has 
some ecological validity. He then showed that “in 20 of 
the 24 cases, the 95% CI includes the mean next above it 
in the figure” (p. 13; see also Cumming & Maillardet, 2006, 
for a similar and more precise result). 

ST and the CI approaches use different definitions of 
replication (see also Open Science Collaboration, 2015). 
ST asks whether the point-value of the tested hypothesis 
(i.e., 0 in the case of NHST) lies outside of the CI in a sec-
ond study if it lay outside of the CI in an original study, 
whereas the CI approach asks whether the mean of a first 
study lies within the CI of the second (where the order 
of the two is arbitrary). The CI approach is more liberal 
when empirical effects have the same sign (Simonsohn, 
2015). Trivially, one might make ST equally liberal by, for 
example, simply asking whether, after an initial rejection 
of the null hypothesis, the mean of the second study has 

Figure 1: The correlation between a (log-transformed) ratio and its (log-transformed) numerator for different input 
correlations between numerator and denominator. 
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the same sign. Researchers might balk at this suggestion, 
but imagine a scenario in which each of a large num-
ber of experiments yields a small nonsignificant effect 
of the same sign. Meta-analysis will assert the existence 
of a small effect regardless of whether the ST or the CI 
approach is used. 

Inspection of Cumming’s CI criterion reveals potentially 
awkward patterns. The second mean might lie within the 
CI of the first mean but have a different sign. This would 
be consistent with the ST view that a null finding was 
replicated, but the CI approach does not refer to a null 
hypothesis. So what has been replicated? Another concern 
involves sample size. As N increases, so does the precision 
of the parameter estimates. The shrinkage of the CI signals 
this greater precision, but it also reduces the probability 
that one sample mean will lie within the CI of another. 
The goal of maximizing the probability of replicating an 
inference therefore conflicts with the goal of maximizing 
the precision of measurement. If replication is defined 
by Cumming’s criterion, small-sample experiments with 
wide CIs will yield the greatest number of successful 
replications. Imprecise and error-prone experimental 
designs produce CIs large enough to contain the means 
of similarly noisy follow-up studies. When sample size is 
increased, or other means are deployed to increase preci-
sion, the probability of a successful replication should go 
down. As CIs become smaller, it will be less likely that they 
contain the means of other studies. In short, increases in 
sample size produce conflicting consequences. On the 
one hand, they shrink the CI of an individual study, but 
on the other hand, they also shrink the variation of the 
means across studies. The question is whether this greater 
homogeneity in the means will offset the reduction in the 
width of the CI. 

We sampled observations from a distribution with  
μ = 55 and σ = 10 (i.e., δ = .5 relative to the null distribution 
of μ = 50 and σ = 10), computed a 95% CI around each 
observed mean, and conducted a one-sample t-test against 
a null hypothesis. We repeated this process 1,000 times 
for each of 10 steps of sample size (N = 10 to 100). Table 3  

shows the mean and the median widths of these CI, the 
SD of these means, as well as the mean and the median 
p values. Notice that the correlation between the width 
of the CI and the SD of the means was nearly perfect,  
r = .997, which suggests that, increasing the statistical 
power of a study does not increase the probability of a 
successful replication by the CI criterion.

We then estimated of the probability of a successful 
replication using both the CI and the ST frameworks. 
Assuming a false null hypothesis (i.e., p(H) = 0), we simu-
lated the probability with which the mean obtained in one 
simulated experiment would fall within the CI of another 
experiment. The results in Table 4 show that the CI meas-
ure predicts a high probability of replication regardless of 
sample size. In contrast, the p value is sensitive to sample 
size; as samples get larger, the probability of significance 
(i.e., pp) increases sharply. The joint probabilities in the 
rightmost column of the table show that with increasing 
sample size, the probability of finding significance in the 
first and the second study (i.e., pp2) approaches 1. Over 
this series of simulations, the median probability of repli-
cation is remarkably similar for both the CI (M = .841) and 
ST (M = .830) approaches.

If the replicability of research findings is in question, 
the CI measure ignores the power of large studies to 
repeatedly yield the same result. When N = 100, our 
simulation yields a probability of replication of .85 
and .98 respectively for the CI and the ST approach. In 
contrast, when samples are small (N = 10) and power 
is low, the probability of replication remains high (.85) 
for the CI measure, whereas ST yields a total probabil-
ity of obtaining the same result of .60 (the probability 
of two significant results plus the probability of two 
non-significant results). The modest probabilities of 
replication offered by ST for small samples are not a 
flaw of method, but the sign of healthy skepticism. 
By casting the net for acceptable replications too 
wide, the CI approach inflates both false positive and 
false negative error rates – again, especially for small 
samples.5 

Table 3: CI and p Values as a Function of Sample Size when p(H) = 0.

N M CI Width Mdn CI Width SD of M M of p Mdn p

10 14.13 14.04 3.24 0.2467 0.1455

20 9.33 9.24 2.31 0.1249 0.0381

30 7.41 7.39 1.85 0.0635 0.0114

40 6.32 6.28 1.61 0.0292 0.0025

50 5.68 5.67 1.35 0.0125 0.0010

60 5.13 5.10 1.27 0.0068 0.0002

70 4.76 4.75 1.21 0.0039 0.0001

80 4.45 4.45 1.08 0.0015 0.0000

90 4.20 4.18 1.10 0.0011 0.0000

100 3.97 3.96 0.97 0.0005 0.0000

Note. M = mean; Mdn = median; SD = standard deviation.
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5. Review
Significance testing, ST, is meant to support statistical 
inference under uncertainty. As any method of inductive 
inference, ST faces many challenges, and it has been dif-
ficult to find a balanced evaluation of its strengths and 
weaknesses. Recently, diverse proposals have been made 
to reform statistical practice, such as lowering the thresh-
old for statistical significance, adding alternative meth-
ods, and even abandoning ST altogether. As some of the 
uncertainty raised by questions of induction are irreduc-
ible, it is necessary to explore not only the strengths and 
weakness of a particular method, but to also ask how the 
balance of strengths and weaknesses compares with the 
strengths and weaknesses of other available methods. A 
comprehensive review of all methods along all possible 
criteria of validity is beyond the scope of any particular 
investigation. We therefore focused on four questions in 
the critical literature. 

Using simulation experiments, we reproduced the sta-
tistical patterns associated with each concern. Then we 
showed that each concern is valid in the context of spe-
cific assumptions. By making assumptions more flexibly, 
we sought a broader evaluation of ST. In each of four areas 
of concern, we found that p values can help researchers 
reduce the uncertainty they face regarding the hypotheses 
at stake. Using p values as heuristic cues instead of rigid 
decision criteria, researchers can make informed inferences  
that outperform guessing and that predict inferences 
made with methods requiring more assumptions or 
informational input. We have also seen that some of the 
alternatives to ST are susceptible to shortcomings and lim-
itations of their own. All told, we agree with Wasserstein 
(2017) that the greatest psychological challenge in the 
context of statistical induction is the mistaken belief that 
there may be a perfect way to do it. 

To review, we first addressed the concern that p values 
are poor predictors of the posterior probability of the 
tested hypothesis. This concern goes to the heart of induc-
tion, which requires a leap from the known (evidence) to 
the unknown (the reality creating these data). We found 
that in plausible settings, the correlation between p val-
ues and the post-study probability of the tested hypoth-
esis can be quite large. Perhaps these correlations are large 
enough to allow ST to play a continued role in scientific 
inference, especially when researchers carefully estimate 
a range of credible correlations between of p values and 
posterior probabilities in their area of study.  

Second, we addressed the concern that p values are 
too variable to be useful. We showed that this concern is 
biased by its limited focus on a true null hypothesis. This 
restriction begs the question of whether the null is true. 
The probability distribution of p should be studied for dif-
ferent alternative hypotheses, a strategy encouraged by 
recent developments in p-curve analysis and related meth-
ods (Simonsohn et al., 2014). We introduced an ‘inductive 
value’ index, which considers both the obtained p value 
and its prior probability of occurring for a single study. Our 
guiding assumption is that lower p values are often more 
‘valuable’ to the researcher than large p values because 
they are associated with large true effects. By this metric, 
ST performs well unless the null hypothesis is highly prob-
able a priori and the to-be-detected effect is small. 

Third, we compared likelihood ratios with p values. LRs 
can vary widely for a given p value depending on the alter-
native hypothesis considered, but a limited focus on this 
independent variation obscures the close log-linear rela-
tionship between the two indices when both are allowed 
to vary. When p values are held constant, their sensitivity 
to variations in the relative evidence against the statistical 
hypothesis is defined away. Our analysis suggests that the 

Note. p(rep) = probability of replication, defined as drawing a CI containing the mean of the previous experiment. 
p(sign.2) = probability of finding significance (p ≤ .05) twice in a row.

Table 4: Probability of replication with CI and NHST.

Confidence Interval Approach NHST Approach

N M p(rep) SD p(rep) p ( p <= .05 ) p (sign.2)

10 0.854 0.129 0.279 0.078

20 0.834 0.143 0.545 0.296

30 0.836 0.145 0.732 0.535

40 0.829 0.148 0.85 0.722

50 0.856 0.138 0.95 0.902

60 0.844 0.148 0.971 0.942

70 0.833 0.151 0.983 0.965

80 0.849 0.140 0.994 0.987

90 0.820 0.158 0.996 0.991

100 0.851 0.146 0.999 0.997

M 0.841 0.145 0.830 0.742
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p value should not be dismissed lightly because it (or its 
corresponding likelihood) determines the numerator (or 
the denominator depending on the analyst’s preference) 
of the LR. If the LR performs well, it does so partly because 
the p value performs well. This is not to say that there is 
no place for the LR: when specific alternatives are defined, 
this can be a useful tool for evaluating the relative eviden-
tiary strength of the evidence.

Fourth, we addressed the claim that confidence inter-
vals provide better estimates of the replicability of an 
empirical result. We find that CI overlaps are uniformly 
large and that this is not a useful feature for the estima-
tion of replicability. The width of the CI for a particular 
sample mean is highly correlated with the variability of 
means over different sample sizes. Therefore, estimates of 
replicability performed with CI are insensitive to statisti-
cal power. If the results of studies with high power are 
to be regarded as more predictive of replication than the 
results of studies with low power, ST should be preferred. 
The blindspot of ST lies elsewhere. When two studies yield 
significant results but very different effect size estimates, 
a CI analysis takes note, whereas ST does not. We urge 
researchers to pay close attention to effect sizes and CI as 
well as p values. 

6. Conclusion
One of David Hume’s lasting legacies is to have shown 
that no method of inductive inference can be justified 
deductively (Hume, 1978/1739). The few who tried to do 
this for ST (e.g., Chow, 1998) reaped a storm of criticism 
(see commentaries on Chow’s article). Researchers have to 
accept the necessity of evaluating methods of inductive 
inference by indirect, inductive means. In this investiga-
tion, we used simulation experiments to find the condi-
tions under which the p value performs well or poorly. Our 
findings are a partial response to a set of challenges to 
the validity of p. We find that these critiques carry their 
own burden of incompleteness. The proposed alternative 
methods have considerable strengths, which researchers 
can exploit under suitable conditions, but we do not share 
the view that ST is fatally flawed. The goal of any method 
of inductive reasoning and inference is to model and man-
age uncertainty. Often, the selection of inductive methods 
is itself a choice made under uncertainty. We hope that 
our investigation will help researchers discern when to 
include ST in their quest to understand their data. 

We began this article with a note of how the debate over 
statistical analysis is often framed as an inquisition into 
the flaws of ST. The present article too is cast in the mold 
of this ongoing controversy. There have been many critical 
assessments (e.g., Lykken, 1968; Meehl, 1978; Rozeboom, 
1960, are famous early examples, though far from the 
earliest) and occasional efforts at defense (Chow, 1998; 
García-Pérez, 2016; Hagen, 1997). The current climate is 
characterized by the question of why ST is still alive after 
so many fatal blows. A seemingly inescapable conclusion 
is that researchers who continue to use the p value are to 
be accused of inertia or mental denseness. Our approach 
is different (Krueger & Heck, 2017; see also Cohen, 1994; 
Krueger, 2001; Nickerson, 2000). We cast ST as a heuristic 

tool of induction, thereby trying to avoid what many crit-
ics condemn as ST’s most fatal flaw: its encouragement 
of dichotomous decision-making (Amrhein, Korner-
Nievergelt, & Roth, 2017; Greenland, 2017; McShane &  
Gal, 2016). We cannot conclude that ST, or any other 
method, is categorically good or bad. If we did, we might 
ourselves be guilty of dichotomania. 

There is a lesson for future comparative efforts and 
intervention of institutional task forces. Instead of set-
ting up ST as a defendant awaiting a verdict, it might be 
useful to articulate the mission of inductive inference 
and specific questions and challenges arising from it. 
We encourage careful consideration of when a statistical 
test might be necessary, and when estimation methods, 
unrestricted by dichotomania (Greenland, 2017), may be 
better suited for describing a set of results. Against these 
questions and challenges the various tools in the statisti-
cal box can then be measured and evaluated. Assuming 
that the perspective of ecological rationality can be 
extended to ecological induction, we may then identify 
the conditions under which individual tools perform 
better than their alternatives. Once this goal has been 
achieved – if it is achievable – statisticians and work-
ing researchers can move beyond the well-intended but 
vague advice to use their judgment and deploy statistical 
tools wisely. 

Data Accessibility Statement
Matlab code for simulations [1] [2] and [4] can be found 
on Patrick Heck’s website http://www.patrickrheck.
com/data--materials.html. Simulation [3] was run in 
Excel. 

Notes
	 1	 This does not mean that a low p value will never be 

produced in this scenario (see Bem, 2011; Replicability-
Index, 2018)

	 2	 More generally, it is extremity that is inversely related 
to probability. Catastrophes are rarer than mishaps 
much like great joy is rarer than a pleasant mood. 

	 3	 The argument presented in this section may also be 
stated as a probabilistic reverse inference. If there is 
an effect, p values will tend to be low. The p value is 
low. We conclude that there is probably an effect. This 
inference is logically invalid. Its degree of probabilistic 
validity depends, in part, on the factors discussed in 
this section.

	 4	 The same holds true for the upper-Bayes-factor-
bound proposed by Bayarri et al. (2016), i.e., 

1 .
1n e p p  

	 5	 Simonsohn (2015) offered an innovative use of ST 
to answer one version of the replication riddle. His 
method finds the effect size δ that would have been 
detected by the original study with the probability 
of .33. Then, a replication study is conducted with a 
power of .80 to reject that δ. If the observed effect 
size, d, in the replication study is smaller than δ 
and if that difference is significant, the researcher 
concludes that the original study was so underpow-
ered that the obtained significant result may not be 
trusted. 

http://www.patrickrheck.com/data--materials.html
http://www.patrickrheck.com/data--materials.html
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